A quantitative method to detect human exposure to sulfur and nitrogen mustards via protein adducts
Sulfur and nitrogen mustards are internationally banned vesicants listed as Schedule 1 chemical agents in the Chemical Weapons Convention. These compounds are highly reactive electrophiles that form stable adducts to a variety of available amino acid residues on proteins upon exposure. We present a...
Gespeichert in:
Veröffentlicht in: | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2019-07, Vol.1121, p.9-17 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sulfur and nitrogen mustards are internationally banned vesicants listed as Schedule 1 chemical agents in the Chemical Weapons Convention. These compounds are highly reactive electrophiles that form stable adducts to a variety of available amino acid residues on proteins upon exposure. We present a quantitative exposure assay that simultaneously measures agent specific protein adducts to cysteine for sulfur mustard (HD) and three nitrogen mustards (HN1, HN2, and HN3). Proteinase K was added to a serum or plasma sample to digest protein adducts and form the target analyte, the blister agent bound to the tripeptide cysteine-proline-phenylalanine (CPF). The mustard adducted-tripeptide was purified by solid phase extraction and analyzed using isotope dilution LC-MS/MS. Product ion structures were identified using high-resolution product ion scan data for HD-CPF, HN1-CPF, HN2-CPF, and HN3-CPF. Thorough matrix comparison, analyte recovery, ruggedness, and stability studies were incorporated during method validation to produce a robust method. The method demonstrated long term-stability, precision (RSD 85% across the reportable range of 3.00–200 ng/mL for each analyte. Compared to previously published assays, this method quantitates both sulfur and nitrogen mustard exposure biomarkers, requires only 10 μL of sample volume, and can use either a liquid sample or dried sample spot.
•Quantitative method to measure sulfur (HD) & nitrogen mustard (HN1, HN2, & HN3) exposures in human clinical specimens•A high-throughput, selective, and sensitive LC-MS/MS method•Assesses 10 μL of plasma or serum as either liquid or dried sample |
---|---|
ISSN: | 1570-0232 1873-376X |
DOI: | 10.1016/j.jchromb.2019.05.005 |