A neuronal blueprint for directional mechanosensation in larval zebrafish

Animals have a remarkable ability to use local cues to orient in space in the absence of a panoramic fixed reference frame. Here we use the mechanosensory lateral line in larval zebrafish to understand rheotaxis, an innate oriented swimming evoked by water currents. We generated a comprehensive ligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2021-04, Vol.31 (7), p.1463-1475.e6
Hauptverfasser: Valera, Gema, Markov, Daniil A., Bijari, Kayvan, Randlett, Owen, Asgharsharghi, Amir, Baudoin, Jean-Pierre, Ascoli, Giorgio A., Portugues, Ruben, López-Schier, Hernán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Animals have a remarkable ability to use local cues to orient in space in the absence of a panoramic fixed reference frame. Here we use the mechanosensory lateral line in larval zebrafish to understand rheotaxis, an innate oriented swimming evoked by water currents. We generated a comprehensive light-microscopy cell-resolution projectome of lateralis afferent neurons (LANs) and used clustering techniques for morphological classification. We find surprising structural constancy among LANs. Laser-mediated microlesions indicate that precise topographic mapping of lateral-line receptors is not essential for rheotaxis. Recording neuronal-activity during controlled mechanical stimulation of neuromasts reveals unequal representation of water-flow direction in the hindbrain. We explored potential circuit architectures constrained by anatomical and functional data to suggest a parsimonious model under which the integration of lateralized signals transmitted by direction-selective LANs underlies the encoding of water-flow direction in the brain. These data provide a new framework to understand how animals use local mechanical cues to orient in space. [Display omitted] •Lateralis afferent neurons are structurally homogeneous in larval zebrafish•Topographic representation of lateral-line receptors is not essential for rheotaxis•Calcium imaging reveals unequal representation of water-flow direction in the brain Mechanosensation enables spatial orientation in the absence of visual references. Valera et al. produce a lateral-line projectome to generate a parsimonious circuit underlying rheotaxis in larval zebrafish. Integration of lateralized signals transmitted by direction-selective neurons underlies the encoding of water-flow direction in the brain.
ISSN:0960-9822
1879-0445
1879-0445
DOI:10.1016/j.cub.2021.01.045