Substrates Modulate Charge-Reorganization Allosteric Effects in Protein–Protein Association

Protein function may be modulated by an event occurring far away from the functional site, a phenomenon termed allostery. While classically allostery involves conformational changes, we recently observed that charge redistribution within an antibody can also lead to an allosteric effect, modulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-03, Vol.12 (11), p.2805-2808
Hauptverfasser: Ghosh, Shirsendu, Banerjee-Ghosh, Koyel, Levy, Dorit, Riven, Inbal, Naaman, Ron, Haran, Gilad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein function may be modulated by an event occurring far away from the functional site, a phenomenon termed allostery. While classically allostery involves conformational changes, we recently observed that charge redistribution within an antibody can also lead to an allosteric effect, modulating the kinetics of binding to target antigen. In the present work, we study the association of a polyhistidine tagged enzyme (phosphoglycerate kinase, PGK) to surface-immobilized anti-His antibodies, finding a significant Charge-Reorganization Allostery (CRA) effect. We further observe that PGK’s negatively charged nucleotide substrates modulate CRA substantially, even though they bind far away from the His-tag–antibody interaction interface. In particular, binding of ATP reduces CRA by more than 50%. The results indicate that CRA is affected by the binding of charged molecules to a protein and provide further insight into the significant role that charge redistribution can play in protein function.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c00437