Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52

Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2-3 in 10,000 individuals, and is caused by one of over 2800 unique mutations. Mutations in result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-03, Vol.22 (7), p.3479
Hauptverfasser: Cale, Jessica M, Greer, Kane, Fletcher, Sue, Wilton, Steve D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2-3 in 10,000 individuals, and is caused by one of over 2800 unique mutations. Mutations in result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22073479