Mitigation of Galvanic Corrosion in Bolted Joint of AZ31B and Carbon Fiber-Reinforced Composite Using Polymer Insulation

The use of polymer insulation to mitigate galvanic corrosion was examined for bolted joints of AZ31B Mg alloy and carbon fiber-reinforced composite. To assess the corrosion behaviors of bolted joints with and without polymer insulation, solution immersion and salt spray exposure (ASTM B117) tests we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-03, Vol.14 (7), p.1670
Hauptverfasser: Jun, Jiheon, Lim, Yong Chae, Li, Yuan, Warren, Charles David, Feng, Zhili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of polymer insulation to mitigate galvanic corrosion was examined for bolted joints of AZ31B Mg alloy and carbon fiber-reinforced composite. To assess the corrosion behaviors of bolted joints with and without polymer insulation, solution immersion and salt spray exposure (ASTM B117) tests were conducted, and the corrosion depths and volumes were determined for the joint specimens after the tests. The polymer-insulated bolted joints exhibited much lower corrosion depths and volumes, highlighting the effective mitigation of galvanic corrosion. The reductions of joint strength in the post-corrosion joint specimens were relatively small (up to ~10%) in the polymer-insulated group but greater (up to 90%) in the group with no insulation. Cross-sectional characterization of post-corrosion joints with polymer insulation revealed local pits developed on AZ31B under galvanic influence, indicating that limited galvanic attack (that did not decrease the joining integrity significantly) could still occur during a long salt spray exposure (~1264 h) owing to the permeation of an aqueous corrosive medium.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14071670