Investigation of glucose catabolism in hypoxic Mcf 7 breast cancer culture
Hypoxia plays an important role in tumor phenotype and progression and alters glycolysis, with changes in signaling pathways that develop in response to hypoxia. In this study, the effects of oxygen (normoxia/hypoxia) and of glucose levels on the glucose metabolism was investigated in MCF-7 cancer c...
Gespeichert in:
Veröffentlicht in: | Cytotechnology (Dordrecht) 2021-04, Vol.73 (2), p.217-232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxia plays an important role in tumor phenotype and progression and alters glycolysis, with changes in signaling pathways that develop in response to hypoxia. In this study, the effects of oxygen (normoxia/hypoxia) and of glucose levels on the glucose metabolism was investigated in MCF-7 cancer cells. Under either normoxia or hypoxia conditions, the cells were exposed to glucose at different concentrations (0, 5.5, 15 or 55 mM) for either 3, 6, 12, 24 or 48 h. In all groups, cell viability, levels of key enzymes reflecting glycolytic metabolism in cell lysates, glucose consumed in the medium and extracellular lactate levels and wound closure percentages were determined. In hypoxic cells, intracellular consumption of glucose, and extracellular lactate levels due to increased glucose concentration were observed to be higher (compared to normoxia) and as a result of prolonged exposure to hypoxia, cells were observed to develop resistance to the prolonged exposure to hypoxia. The number of glycolytic enzymes obtained at different levels proved that cells had different potential capacities and changing mechanisms for the metabolic needs of the cell depending on the glucose amount in the medium and time in adapting to the oxygen tension. This study showed that there was an important interaction between hypoxia and glucose metabolism in general, and it was concluded that metabolic processes activated by hypoxia could offer new therapeutic targets. |
---|---|
ISSN: | 0920-9069 1573-0778 |
DOI: | 10.1007/s10616-021-00459-2 |