Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns

Abstract Vertebrate genomes contain major (>99.5%) and minor (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2021-04, Vol.49 (6), p.3524-3545
Hauptverfasser: Olthof, Anouk M, White, Alisa K, Mieruszynski, Stephen, Doggett, Karen, Lee, Madisen F, Chakroun, Almahdi, Abdel Aleem, Alice K, Rousseau, Justine, Magnani, Cinzia, Roifman, Chaim M, Campeau, Philippe M, Heath, Joan K, Kanadia, Rahul N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3545
container_issue 6
container_start_page 3524
container_title Nucleic acids research
container_volume 49
creator Olthof, Anouk M
White, Alisa K
Mieruszynski, Stephen
Doggett, Karen
Lee, Madisen F
Chakroun, Almahdi
Abdel Aleem, Alice K
Rousseau, Justine
Magnani, Cinzia
Roifman, Chaim M
Campeau, Philippe M
Heath, Joan K
Kanadia, Rahul N
description Abstract Vertebrate genomes contain major (>99.5%) and minor (
doi_str_mv 10.1093/nar/gkab118
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkab118</oup_id><sourcerecordid>2497097488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3ee15a4b23aafbb7028cbe4bf5e3f6ea6cb1142ad9d47cb96b43d293445458613</originalsourceid><addsrcrecordid>eNp9kcFu1DAURa0KRKctK_bIK4SEQu3YcZINUlUoIFViQ9fWs_MydUnsYCdT-AG-G4eZVrBhZUvvvHMtX0JecPaWs1ace4jn229gOG-OyIYLVRayVeUTsmGCVQVnsjkmJyndMcYlr-QzciyEUqxu2Ib8eu9SXKbZBU9DT_FH8IWJrts6v6XOzxjBrsNEDc73iJ7Ot0hH50Ok4Ds6wl2-pWlwFkMKIyYaMS3DnPI2hSELPMxuh3tmtUIMy7r5x5EjYrafkac9DAmfH85TcnP14evlp-L6y8fPlxfXhZW8nAuByCuQphQAvTE1KxtrUJq-QtErBGXzL8gSuraTtTWtMlJ0ZSukrGTVKC5Oybu9d1rMiJ3FHA-DnqIbIf7UAZz-d-Ldrd6GnW6YkKpaBa8Pghi-L5hmPbpkcRjAY1iSLmVbs7aWTZPRN3vUxpBSxP4xhjO9Nqdzc_rQXKZf_v2yR_ahqgy82gNhmf5r-g0GUKhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497097488</pqid></control><display><type>article</type><title>Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Olthof, Anouk M ; White, Alisa K ; Mieruszynski, Stephen ; Doggett, Karen ; Lee, Madisen F ; Chakroun, Almahdi ; Abdel Aleem, Alice K ; Rousseau, Justine ; Magnani, Cinzia ; Roifman, Chaim M ; Campeau, Philippe M ; Heath, Joan K ; Kanadia, Rahul N</creator><creatorcontrib>Olthof, Anouk M ; White, Alisa K ; Mieruszynski, Stephen ; Doggett, Karen ; Lee, Madisen F ; Chakroun, Almahdi ; Abdel Aleem, Alice K ; Rousseau, Justine ; Magnani, Cinzia ; Roifman, Chaim M ; Campeau, Philippe M ; Heath, Joan K ; Kanadia, Rahul N</creatorcontrib><description>Abstract Vertebrate genomes contain major (&gt;99.5%) and minor (&lt;0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry–Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkab118</identifier><identifier>PMID: 33660780</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alternative Splicing ; Animals ; Apoptosis Regulatory Proteins - metabolism ; Cardiomyopathies - genetics ; Cells, Cultured ; Cerebellar Ataxia - genetics ; Exons ; Growth Disorders - genetics ; Humans ; Intellectual Disability - genetics ; Introns ; Mental Retardation, X-Linked - genetics ; Mice ; Microcephaly - genetics ; Nonsense Mediated mRNA Decay ; Osteochondrodysplasias - genetics ; Polyribosomes - metabolism ; Primary Immunodeficiency Diseases - genetics ; Retinal Diseases - genetics ; RNA and RNA-protein complexes ; RNA, Small Nuclear - antagonists &amp; inhibitors ; Spliceosomes - metabolism ; Transcription Factors - metabolism</subject><ispartof>Nucleic acids research, 2021-04, Vol.49 (6), p.3524-3545</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3ee15a4b23aafbb7028cbe4bf5e3f6ea6cb1142ad9d47cb96b43d293445458613</citedby><cites>FETCH-LOGICAL-c412t-3ee15a4b23aafbb7028cbe4bf5e3f6ea6cb1142ad9d47cb96b43d293445458613</cites><orcidid>0000-0001-7197-912X ; 0000-0001-9713-7107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034651/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034651/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33660780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olthof, Anouk M</creatorcontrib><creatorcontrib>White, Alisa K</creatorcontrib><creatorcontrib>Mieruszynski, Stephen</creatorcontrib><creatorcontrib>Doggett, Karen</creatorcontrib><creatorcontrib>Lee, Madisen F</creatorcontrib><creatorcontrib>Chakroun, Almahdi</creatorcontrib><creatorcontrib>Abdel Aleem, Alice K</creatorcontrib><creatorcontrib>Rousseau, Justine</creatorcontrib><creatorcontrib>Magnani, Cinzia</creatorcontrib><creatorcontrib>Roifman, Chaim M</creatorcontrib><creatorcontrib>Campeau, Philippe M</creatorcontrib><creatorcontrib>Heath, Joan K</creatorcontrib><creatorcontrib>Kanadia, Rahul N</creatorcontrib><title>Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Vertebrate genomes contain major (&gt;99.5%) and minor (&lt;0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry–Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.</description><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Cardiomyopathies - genetics</subject><subject>Cells, Cultured</subject><subject>Cerebellar Ataxia - genetics</subject><subject>Exons</subject><subject>Growth Disorders - genetics</subject><subject>Humans</subject><subject>Intellectual Disability - genetics</subject><subject>Introns</subject><subject>Mental Retardation, X-Linked - genetics</subject><subject>Mice</subject><subject>Microcephaly - genetics</subject><subject>Nonsense Mediated mRNA Decay</subject><subject>Osteochondrodysplasias - genetics</subject><subject>Polyribosomes - metabolism</subject><subject>Primary Immunodeficiency Diseases - genetics</subject><subject>Retinal Diseases - genetics</subject><subject>RNA and RNA-protein complexes</subject><subject>RNA, Small Nuclear - antagonists &amp; inhibitors</subject><subject>Spliceosomes - metabolism</subject><subject>Transcription Factors - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURa0KRKctK_bIK4SEQu3YcZINUlUoIFViQ9fWs_MydUnsYCdT-AG-G4eZVrBhZUvvvHMtX0JecPaWs1ace4jn229gOG-OyIYLVRayVeUTsmGCVQVnsjkmJyndMcYlr-QzciyEUqxu2Ib8eu9SXKbZBU9DT_FH8IWJrts6v6XOzxjBrsNEDc73iJ7Ot0hH50Ok4Ds6wl2-pWlwFkMKIyYaMS3DnPI2hSELPMxuh3tmtUIMy7r5x5EjYrafkac9DAmfH85TcnP14evlp-L6y8fPlxfXhZW8nAuByCuQphQAvTE1KxtrUJq-QtErBGXzL8gSuraTtTWtMlJ0ZSukrGTVKC5Oybu9d1rMiJ3FHA-DnqIbIf7UAZz-d-Ldrd6GnW6YkKpaBa8Pghi-L5hmPbpkcRjAY1iSLmVbs7aWTZPRN3vUxpBSxP4xhjO9Nqdzc_rQXKZf_v2yR_ahqgy82gNhmf5r-g0GUKhA</recordid><startdate>20210406</startdate><enddate>20210406</enddate><creator>Olthof, Anouk M</creator><creator>White, Alisa K</creator><creator>Mieruszynski, Stephen</creator><creator>Doggett, Karen</creator><creator>Lee, Madisen F</creator><creator>Chakroun, Almahdi</creator><creator>Abdel Aleem, Alice K</creator><creator>Rousseau, Justine</creator><creator>Magnani, Cinzia</creator><creator>Roifman, Chaim M</creator><creator>Campeau, Philippe M</creator><creator>Heath, Joan K</creator><creator>Kanadia, Rahul N</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7197-912X</orcidid><orcidid>https://orcid.org/0000-0001-9713-7107</orcidid></search><sort><creationdate>20210406</creationdate><title>Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns</title><author>Olthof, Anouk M ; White, Alisa K ; Mieruszynski, Stephen ; Doggett, Karen ; Lee, Madisen F ; Chakroun, Almahdi ; Abdel Aleem, Alice K ; Rousseau, Justine ; Magnani, Cinzia ; Roifman, Chaim M ; Campeau, Philippe M ; Heath, Joan K ; Kanadia, Rahul N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3ee15a4b23aafbb7028cbe4bf5e3f6ea6cb1142ad9d47cb96b43d293445458613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Cardiomyopathies - genetics</topic><topic>Cells, Cultured</topic><topic>Cerebellar Ataxia - genetics</topic><topic>Exons</topic><topic>Growth Disorders - genetics</topic><topic>Humans</topic><topic>Intellectual Disability - genetics</topic><topic>Introns</topic><topic>Mental Retardation, X-Linked - genetics</topic><topic>Mice</topic><topic>Microcephaly - genetics</topic><topic>Nonsense Mediated mRNA Decay</topic><topic>Osteochondrodysplasias - genetics</topic><topic>Polyribosomes - metabolism</topic><topic>Primary Immunodeficiency Diseases - genetics</topic><topic>Retinal Diseases - genetics</topic><topic>RNA and RNA-protein complexes</topic><topic>RNA, Small Nuclear - antagonists &amp; inhibitors</topic><topic>Spliceosomes - metabolism</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olthof, Anouk M</creatorcontrib><creatorcontrib>White, Alisa K</creatorcontrib><creatorcontrib>Mieruszynski, Stephen</creatorcontrib><creatorcontrib>Doggett, Karen</creatorcontrib><creatorcontrib>Lee, Madisen F</creatorcontrib><creatorcontrib>Chakroun, Almahdi</creatorcontrib><creatorcontrib>Abdel Aleem, Alice K</creatorcontrib><creatorcontrib>Rousseau, Justine</creatorcontrib><creatorcontrib>Magnani, Cinzia</creatorcontrib><creatorcontrib>Roifman, Chaim M</creatorcontrib><creatorcontrib>Campeau, Philippe M</creatorcontrib><creatorcontrib>Heath, Joan K</creatorcontrib><creatorcontrib>Kanadia, Rahul N</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olthof, Anouk M</au><au>White, Alisa K</au><au>Mieruszynski, Stephen</au><au>Doggett, Karen</au><au>Lee, Madisen F</au><au>Chakroun, Almahdi</au><au>Abdel Aleem, Alice K</au><au>Rousseau, Justine</au><au>Magnani, Cinzia</au><au>Roifman, Chaim M</au><au>Campeau, Philippe M</au><au>Heath, Joan K</au><au>Kanadia, Rahul N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2021-04-06</date><risdate>2021</risdate><volume>49</volume><issue>6</issue><spage>3524</spage><epage>3545</epage><pages>3524-3545</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Vertebrate genomes contain major (&gt;99.5%) and minor (&lt;0.5%) introns that are spliced by the major and minor spliceosomes, respectively. Major intron splicing follows the exon-definition model, whereby major spliceosome components first assemble across exons. However, since most genes with minor introns predominately consist of major introns, formation of exon-definition complexes in these genes would require interaction between the major and minor spliceosomes. Here, we report that minor spliceosome protein U11-59K binds to the major spliceosome U2AF complex, thereby supporting a model in which the minor spliceosome interacts with the major spliceosome across an exon to regulate the splicing of minor introns. Inhibition of minor spliceosome snRNAs and U11-59K disrupted exon-bridging interactions, leading to exon skipping by the major spliceosome. The resulting aberrant isoforms contained a premature stop codon, yet were not subjected to nonsense-mediated decay, but rather bound to polysomes. Importantly, we detected elevated levels of these alternatively spliced transcripts in individuals with minor spliceosome-related diseases such as Roifman syndrome, Lowry–Wood syndrome and early-onset cerebellar ataxia. In all, we report that the minor spliceosome informs splicing by the major spliceosome through exon-definition interactions and show that minor spliceosome inhibition results in aberrant alternative splicing in disease.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33660780</pmid><doi>10.1093/nar/gkab118</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7197-912X</orcidid><orcidid>https://orcid.org/0000-0001-9713-7107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2021-04, Vol.49 (6), p.3524-3545
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034651
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alternative Splicing
Animals
Apoptosis Regulatory Proteins - metabolism
Cardiomyopathies - genetics
Cells, Cultured
Cerebellar Ataxia - genetics
Exons
Growth Disorders - genetics
Humans
Intellectual Disability - genetics
Introns
Mental Retardation, X-Linked - genetics
Mice
Microcephaly - genetics
Nonsense Mediated mRNA Decay
Osteochondrodysplasias - genetics
Polyribosomes - metabolism
Primary Immunodeficiency Diseases - genetics
Retinal Diseases - genetics
RNA and RNA-protein complexes
RNA, Small Nuclear - antagonists & inhibitors
Spliceosomes - metabolism
Transcription Factors - metabolism
title Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20exon-bridging%20interactions%20between%20the%20minor%20and%20major%20spliceosomes%20results%20in%20alternative%20splicing%20around%20minor%20introns&rft.jtitle=Nucleic%20acids%20research&rft.au=Olthof,%20Anouk%20M&rft.date=2021-04-06&rft.volume=49&rft.issue=6&rft.spage=3524&rft.epage=3545&rft.pages=3524-3545&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkab118&rft_dat=%3Cproquest_pubme%3E2497097488%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497097488&rft_id=info:pmid/33660780&rft_oup_id=10.1093/nar/gkab118&rfr_iscdi=true