Different combinations of serotonin receptors regulate predatory and bacterial feeding behaviors in the nematode Pristionchus pacificus

Feeding behavior is one of the most fundamental behaviors in animals, and regulation of this behavior is critical for proper food intake. The nematode Pristionchus pacificus exhibits dimorphism in feeding behavior, bacterial feeding and predatory feeding on other nematodes, and the latter behavior i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2021-02, Vol.11 (2)
Hauptverfasser: Ishita, Yuuki, Chihara, Takahiro, Okumura, Misako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feeding behavior is one of the most fundamental behaviors in animals, and regulation of this behavior is critical for proper food intake. The nematode Pristionchus pacificus exhibits dimorphism in feeding behavior, bacterial feeding and predatory feeding on other nematodes, and the latter behavior is assumed to be an evolutionarily novel behavior. Both types of feeding behavior are modulated by serotonin; however, the downstream mechanism that modulates these behaviors is still to be clarified. Here, we focused on serotonin receptors and examined their expression patterns in P. pacificus. We also generated knockout mutants of the serotonin receptors using the CRISPR/Cas9 system and examined feeding behaviors. We found that Ppa-ser-5 mutants and the Ppa-ser-1; Ppa-ser-7 double mutant decreased predation. Detailed observation of the pharyngeal movement revealed that the Ppa-ser-1; Ppa-ser-7 double mutant reduces tooth movement, which is required for efficient predatory feeding. Conversely, Ppa-ser-7 and Ppa-mod-1 mutants decreased bacterial feeding. This study revealed that specific combinations of serotonin receptors are essential for the modulation of these distinct feeding behaviors, providing insight into the evolution of neural pathways to regulate novel feeding behavior.
ISSN:2160-1836
2160-1836
DOI:10.1093/g3journal/jkab011