Identification of Candidate Biomarkers for Idiopathic Thrombocytopenic Purpura by Bioinformatics Analysis of Microarray Data

Idiopathic Thrombocytopenic Purpura (ITP) is a multifactorial disease with decreased count of platelet that can lead to bruising and bleeding manifestations. This study was intended to identify critical genes associated with chronic ITP. The gene expression profile GSE46922 was downloaded from the G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of pharmaceutical research : IJPR 2020-01, Vol.19 (4), p.275-289
Hauptverfasser: Gilanchi, Samira, Zali, Hakimeh, Faranoush, Mohammad, Tavirani, Mostafa Rezaei, Shahriary, Keyvan, Daskareh, Mahyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Idiopathic Thrombocytopenic Purpura (ITP) is a multifactorial disease with decreased count of platelet that can lead to bruising and bleeding manifestations. This study was intended to identify critical genes associated with chronic ITP. The gene expression profile GSE46922 was downloaded from the Gene Expression Omnibus database to recognize Differentially Expressed Genes (DEGs) by R software. Gene ontology and pathway analyses were performed by DAVID. The biological network was constructed using the Cytoscape. Molecular Complex Detection (MCODE) was applied for detecting module analysis. Transcription factors were identified by the PANTHER classification system database and the gene regulatory network was constructed by Cytoscape. One hundred thirty-two DEGs were screened from comparison newly diagnosed ITP than chronic ITP. Biological process analysis revealed that the DEGs were enriched in terms of positive regulation of autophagy and prohibiting apoptosis in the chronic phase. KEGG pathway analysis showed that the DEGs were enriched in the ErbB signaling pathway, mRNA surveillance pathway, Estrogen signaling pathway, and Notch signaling pathway. Additionally, the biological network was established, and five modules were extracted from the network. ARRB1, VIM, SF1, BUB3, GRK5, and RHOG were detected as hub genes that also belonged to the modules. SF1 also was identified as a hub-TF gene. To sum up, microarray data analysis could perform a panel of genes that provides new clues for diagnosing chronic ITP.
ISSN:1735-0328
1726-6890
DOI:10.22037/ijpr.2020.113442.14305