Differential regulation of triterpene biosynthesis induced by an early failure in cuticle formation in apple
Waxy apple cuticles predominantly accumulate ursane-type triterpenes, but the profile shifts with the induction of skin russeting towards lupane-type triterpenes. We previously characterised several key enzymes in the ursane-type and lupane-type triterpene pathways, but this switch in triterpene met...
Gespeichert in:
Veröffentlicht in: | Horticulture research 2021-04, Vol.8 (1), p.75, Article 75 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Waxy apple cuticles predominantly accumulate ursane-type triterpenes, but the profile shifts with the induction of skin russeting towards lupane-type triterpenes. We previously characterised several key enzymes in the ursane-type and lupane-type triterpene pathways, but this switch in triterpene metabolism associated with loss of cuticle integrity is not fully understood. To analyse the relationship between triterpene biosynthesis and russeting, we used microscopy, RNA-sequencing and metabolite profiling during apple fruit development. We compared the skin of three genetically-close clones of ‘Golden Delicious’ (with waxy, partially russeted and fully russeted skin). We identified a unique molecular profile for the russet clone, including low transcript abundance of multiple cuticle-specific metabolic pathways in the early stages of fruit development. Using correlation analyses between gene transcription and metabolite concentration we found MYB transcription factors strongly associated with lupane-type triterpene biosynthesis. We showed how their transcription changed with the onset of cuticle cracking followed by russeting and that one factor, MYB66, was able to bind the promoter of the oxidosqualene cyclase OSC5, to drive the production of lupeol derivatives. These results provide insights into the breakdown of cuticle integrity leading to russet and how this drives MYB-regulated changes to triterpene biosynthesis. |
---|---|
ISSN: | 2662-6810 2052-7276 |
DOI: | 10.1038/s41438-021-00511-4 |