Effects of fluoride intake on cortical and trabecular bone microstructure at early adulthood using multi-row detector computed tomography (MDCT)

The aim of this study was to examine the effects of period-specific and cumulative fluoride (F) intake on bone at the levels of cortical and trabecular bone microstructural outcomes at early adulthood using emerging multi-row detector computed tomography (MDCT)-based novel techniques. Ultra-high res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2021-05, Vol.146, p.115882-115882, Article 115882
Hauptverfasser: Saha, Punam K., Oweis, Reem Reda, Zhang, Xiaoliu, Letuchy, Elena, Eichenberger-Gilmore, Julie M., Burns, Trudy L., Warren, John J., Janz, Kathleen F., Torner, James C., Snetselaar, Linda G., Levy, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to examine the effects of period-specific and cumulative fluoride (F) intake on bone at the levels of cortical and trabecular bone microstructural outcomes at early adulthood using emerging multi-row detector computed tomography (MDCT)-based novel techniques. Ultra-high resolution MDCT distal tibia scans were collected at age 19 visits under the Iowa Bone Development Study (IBDS), and cortical and trabecular bone microstructural outcomes were computed at the distal tibia using previously validated methods. CT scans of a tissue characterization phantom were used to calibrate CT numbers (Hounsfield units) into bone mineral density (mg/cc). Period-specific and cumulative F intakes from birth up to the age of 19 years were assessed for IBDS participants through questionnaire, and their relationships with MDCT-derived bone microstructural outcomes were examined using bivariable and multivariable analyses, adjusting for height, weight, maturity offset (years since age of peak height velocity (PHV)), physical activity (questionnaire for adolescents (PAQ-A)), healthy eating index version 2010 (HEI-2010) scores, and calcium and protein intakes. MDCT distal tibia scans were acquired for 324 participants from among the total of 329 participants at age 19 visits. No motion artifacts were observed in any MDCT scans, and all images were successfully processed to measure cortical and trabecular bone microstructural outcomes. At early adulthood, males were observed to have stronger trabecular bone microstructural features, as well as thicker cortical bone (p 
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2021.115882