The Performance of CR180IF and DP600 Laser Welded Steel Sheets under Different Strain Rates

The presented research background is a car body manufacturer's request to test the car body's components welded from dissimilar steel sheets. In view of the vehicle crew's protection, it is necessary to study the static and dynamic behavior of welded steels. Therefore, the influence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-03, Vol.14 (6), p.1553
Hauptverfasser: Mihaliková, Mária, Zgodavová, Kristína, Bober, Peter, Špegárová, Anna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presented research background is a car body manufacturer's request to test the car body's components welded from dissimilar steel sheets. In view of the vehicle crew's protection, it is necessary to study the static and dynamic behavior of welded steels. Therefore, the influence of laser welding on the mechanical and dynamical properties, microstructure, microhardness, and welded joint surface roughness of interstitial free CR180IF and dual-phase DP600 steels were investigated. Static tensile tests were carried out by using testing machine Zwick 1387, and dynamic test used rotary hammer machine RSO. Sheet steel was tested at different strain rates ranging from 10 to 10 s . The laser welds' microstructure and microhardness were evaluated in the base metal, heat-affected zone, and fusion zone. The comprehensive analysis also included chemical analysis, fracture surface analysis, and roughness measurement. The research results showed that the strain rate had an influence on the mechanical properties of base materials and welded joints. The dynamic loading increases the yield stress more than the ultimate tensile strength for the monitored steels, while the most significant increase was recorded for the welded material.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14061553