Bayesian estimation of genetic regulatory effects in high-throughput reporter assays

Abstract Motivation High-throughput reporter assays dramatically improve our ability to assign function to noncoding genetic variants, by measuring allelic effects on gene expression in the controlled setting of a reporter gene. Unlike genetic association tests, such assays are not confounded by lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-01, Vol.36 (2), p.331-338
Hauptverfasser: Majoros, William H, Kim, Young-Sook, Barrera, Alejandro, Li, Fan, Wang, Xingyan, Cunningham, Sarah J, Johnson, Graham D, Guo, Cong, Lowe, William L, Scholtens, Denise M, Hayes, M Geoffrey, Reddy, Timothy E, Allen, Andrew S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation High-throughput reporter assays dramatically improve our ability to assign function to noncoding genetic variants, by measuring allelic effects on gene expression in the controlled setting of a reporter gene. Unlike genetic association tests, such assays are not confounded by linkage disequilibrium when loci are independently assayed. These methods can thus improve the identification of causal disease mutations. While work continues on improving experimental aspects of these assays, less effort has gone into developing methods for assessing the statistical significance of assay results, particularly in the case of rare variants captured from patient DNA. Results We describe a Bayesian hierarchical model, called Bayesian Inference of Regulatory Differences, which integrates prior information and explicitly accounts for variability between experimental replicates. The model produces substantially more accurate predictions than existing methods when allele frequencies are low, which is of clear advantage in the search for disease-causing variants in DNA captured from patient cohorts. Using the model, we demonstrate a clear tradeoff between variant sequencing coverage and numbers of biological replicates, and we show that the use of additional biological replicates decreases variance in estimates of effect size, due to the properties of the Poisson-binomial distribution. We also provide a power and sample size calculator, which facilitates decision making in experimental design parameters. Availability and implementation The software is freely available from www.geneprediction.org/bird. The experimental design web tool can be accessed at http://67.159.92.22:8080 Supplementary information Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btz545