Prolonged Unfrozen Storage and Repeated Freeze-Thawing of SARS-CoV-2 Patient Samples Have Minor Effects on SARS-CoV-2 Detectability by RT-PCR

Reliable transportation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patient samples from a swabbing station to a diagnostics facility is essential for accurate results. Therefore, cooling or freezing the samples is recommended in case of longer transportation times. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of molecular diagnostics : JMD 2021-06, Vol.23 (6), p.691-697
Hauptverfasser: Dzung, Andreas, Cheng, Phil F., Stoffel, Corinne, Tastanova, Aizhan, Turko, Patrick, Levesque, Mitchell P., Bosshard, Philipp P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliable transportation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patient samples from a swabbing station to a diagnostics facility is essential for accurate results. Therefore, cooling or freezing the samples is recommended in case of longer transportation times. In this study, SARS-CoV-2 detectability by RT-PCR was assessed after prolonged unfrozen storage or repetitive freeze-thawing of SARS-CoV-2 samples. SARS-CoV-2–positive patient swabs stored in viral transport medium were exposed to different temperatures (4°C, 25°C, and 35°C) and to repetitive freeze-thawing, to assess the effect of storage conditions on RT-PCR detection. SARS-CoV-2 RNA was still reliably detected by RT-PCR after 21 days of storage in viral transport medium, even when the samples had been stored at 35°C. The maximum observed change in cycle threshold value per day was 0.046 (±0.019) at 35°C, and the maximum observed change in cycle threshold value per freeze-thaw cycle per day was 0.197 (±0.06). Compared with storage at 4°C, viral RNA levels deviated little but significantly when stored at 25°C or 35°C, or after repeated freeze-thawing. The results of this study indicate that viral RNA levels are relatively stable at higher temperatures and repetitive freeze-thawing.
ISSN:1525-1578
1943-7811
DOI:10.1016/j.jmoldx.2021.03.003