The effect of viscoelasticity in an airway closure model

The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-04, Vol.913, Article A31
Hauptverfasser: Romanò, F., Muradoglu, M., Fujioka, H., Grotberg, J.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 913
creator Romanò, F.
Muradoglu, M.
Fujioka, H.
Grotberg, J.B.
description The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominated by the Newtonian behaviour of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sublethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the postcoalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sublethal response of the epithelial cells is induced.
doi_str_mv 10.1017/jfm.2020.1162
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7996000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_1162</cupid><sourcerecordid>2494817276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4042-4791d48f1490b9d05d77825df52195866c5fa1d5c64d4c535c578edacfb0e84d3</originalsourceid><addsrcrecordid>eNptkdtrFDEUxoModq0--ioDvujDtOdkcpm8CKWoFRZ8qc8hm0t3lplJTWa27H9vhl2rFiEQcs4v37l8hLxFuEBAebkLwwUFWl4o6DOyQiZULQXjz8kKgNIakcIZeZXzDgAbUPIlOWsaKQUyWJH2dusrH4K3UxVDte-yjb43eepsNx2qbqxMOV16MIfK9jHPyVdDdL5_TV4E02f_5nSfkx9fPt9e39Tr71-_XV-ta8uA0ZpJhY61AZmCjXLAnZQt5S5wioq3QlgeDDpuBXPM8oZbLlvvjA0b8C1zzTn5dNS9nzeDd9aPUzK9vk_dYNJBR9PpfzNjt9V3ca-lUgIAisDHo8D2ybebq7VeYqVNJQW0eyzsh1OxFH_OPk96KAvxfW9GH-esKQfBERlf0PdP0F2c01hWoSlTrEVJpShUfaRsijknHx47QNCLf7r4pxf_9OJf4d_9Pe0j_duwAlyeBM2wSZ2783_q_l_yF7Vdo3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494817276</pqid></control><display><type>article</type><title>The effect of viscoelasticity in an airway closure model</title><source>Cambridge core</source><creator>Romanò, F. ; Muradoglu, M. ; Fujioka, H. ; Grotberg, J.B.</creator><creatorcontrib>Romanò, F. ; Muradoglu, M. ; Fujioka, H. ; Grotberg, J.B.</creatorcontrib><description>The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominated by the Newtonian behaviour of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sublethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the postcoalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sublethal response of the epithelial cells is induced.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.1162</identifier><identifier>PMID: 33776140</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic reptiles ; Chronic obstructive pulmonary disease ; Closures ; Elastic instability ; Engineering Sciences ; Epithelial cells ; Fluids mechanics ; Investigations ; JFM Papers ; Lungs ; Mechanics ; Mucus ; Numerical analysis ; Propagation ; Properties ; Respiratory tract ; Shear stress ; Surfactants ; Viscoelasticity ; Viscosity ; Wall shear stresses ; Yield stress</subject><ispartof>Journal of fluid mechanics, 2021-04, Vol.913, Article A31</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4042-4791d48f1490b9d05d77825df52195866c5fa1d5c64d4c535c578edacfb0e84d3</citedby><cites>FETCH-LOGICAL-c4042-4791d48f1490b9d05d77825df52195866c5fa1d5c64d4c535c578edacfb0e84d3</cites><orcidid>0000-0002-9511-4718 ; 0000-0002-1758-5418 ; 0000-0001-5947-9667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020011623/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33776140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04297608$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Romanò, F.</creatorcontrib><creatorcontrib>Muradoglu, M.</creatorcontrib><creatorcontrib>Fujioka, H.</creatorcontrib><creatorcontrib>Grotberg, J.B.</creatorcontrib><title>The effect of viscoelasticity in an airway closure model</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominated by the Newtonian behaviour of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sublethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the postcoalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sublethal response of the epithelial cells is induced.</description><subject>Aquatic reptiles</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Closures</subject><subject>Elastic instability</subject><subject>Engineering Sciences</subject><subject>Epithelial cells</subject><subject>Fluids mechanics</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Lungs</subject><subject>Mechanics</subject><subject>Mucus</subject><subject>Numerical analysis</subject><subject>Propagation</subject><subject>Properties</subject><subject>Respiratory tract</subject><subject>Shear stress</subject><subject>Surfactants</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Wall shear stresses</subject><subject>Yield stress</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkdtrFDEUxoModq0--ioDvujDtOdkcpm8CKWoFRZ8qc8hm0t3lplJTWa27H9vhl2rFiEQcs4v37l8hLxFuEBAebkLwwUFWl4o6DOyQiZULQXjz8kKgNIakcIZeZXzDgAbUPIlOWsaKQUyWJH2dusrH4K3UxVDte-yjb43eepsNx2qbqxMOV16MIfK9jHPyVdDdL5_TV4E02f_5nSfkx9fPt9e39Tr71-_XV-ta8uA0ZpJhY61AZmCjXLAnZQt5S5wioq3QlgeDDpuBXPM8oZbLlvvjA0b8C1zzTn5dNS9nzeDd9aPUzK9vk_dYNJBR9PpfzNjt9V3ca-lUgIAisDHo8D2ybebq7VeYqVNJQW0eyzsh1OxFH_OPk96KAvxfW9GH-esKQfBERlf0PdP0F2c01hWoSlTrEVJpShUfaRsijknHx47QNCLf7r4pxf_9OJf4d_9Pe0j_duwAlyeBM2wSZ2783_q_l_yF7Vdo3s</recordid><startdate>20210425</startdate><enddate>20210425</enddate><creator>Romanò, F.</creator><creator>Muradoglu, M.</creator><creator>Fujioka, H.</creator><creator>Grotberg, J.B.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>IKXGN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9511-4718</orcidid><orcidid>https://orcid.org/0000-0002-1758-5418</orcidid><orcidid>https://orcid.org/0000-0001-5947-9667</orcidid></search><sort><creationdate>20210425</creationdate><title>The effect of viscoelasticity in an airway closure model</title><author>Romanò, F. ; Muradoglu, M. ; Fujioka, H. ; Grotberg, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4042-4791d48f1490b9d05d77825df52195866c5fa1d5c64d4c535c578edacfb0e84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic reptiles</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Closures</topic><topic>Elastic instability</topic><topic>Engineering Sciences</topic><topic>Epithelial cells</topic><topic>Fluids mechanics</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Lungs</topic><topic>Mechanics</topic><topic>Mucus</topic><topic>Numerical analysis</topic><topic>Propagation</topic><topic>Properties</topic><topic>Respiratory tract</topic><topic>Shear stress</topic><topic>Surfactants</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Wall shear stresses</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanò, F.</creatorcontrib><creatorcontrib>Muradoglu, M.</creatorcontrib><creatorcontrib>Fujioka, H.</creatorcontrib><creatorcontrib>Grotberg, J.B.</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanò, F.</au><au>Muradoglu, M.</au><au>Fujioka, H.</au><au>Grotberg, J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of viscoelasticity in an airway closure model</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-04-25</date><risdate>2021</risdate><volume>913</volume><artnum>A31</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominated by the Newtonian behaviour of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sublethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the postcoalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sublethal response of the epithelial cells is induced.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>33776140</pmid><doi>10.1017/jfm.2020.1162</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9511-4718</orcidid><orcidid>https://orcid.org/0000-0002-1758-5418</orcidid><orcidid>https://orcid.org/0000-0001-5947-9667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-04, Vol.913, Article A31
issn 0022-1120
1469-7645
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7996000
source Cambridge core
subjects Aquatic reptiles
Chronic obstructive pulmonary disease
Closures
Elastic instability
Engineering Sciences
Epithelial cells
Fluids mechanics
Investigations
JFM Papers
Lungs
Mechanics
Mucus
Numerical analysis
Propagation
Properties
Respiratory tract
Shear stress
Surfactants
Viscoelasticity
Viscosity
Wall shear stresses
Yield stress
title The effect of viscoelasticity in an airway closure model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20viscoelasticity%20in%20an%20airway%20closure%20model&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Roman%C3%B2,%20F.&rft.date=2021-04-25&rft.volume=913&rft.artnum=A31&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.1162&rft_dat=%3Cproquest_pubme%3E2494817276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494817276&rft_id=info:pmid/33776140&rft_cupid=10_1017_jfm_2020_1162&rfr_iscdi=true