The effect of viscoelasticity in an airway closure model
The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominate...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-04, Vol.913, Article A31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau–Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominated by the Newtonian behaviour of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sublethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the postcoalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sublethal response of the epithelial cells is induced. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2020.1162 |