Catalytic photooxygenation degrades brain Aβ in vivo

Protein degradation induced by small molecules by recruiting endogenous protein degradation systems, such as ubiquitin-proteasome systems, to disease-related proteins is an emerging concept to inhibit the function of undruggable proteins. Protein targets without reliable ligands and/or existing outs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-03, Vol.7 (13)
Hauptverfasser: Nagashima, Nozomu, Ozawa, Shuta, Furuta, Masahiro, Oi, Miku, Hori, Yukiko, Tomita, Taisuke, Sohma, Youhei, Kanai, Motomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein degradation induced by small molecules by recruiting endogenous protein degradation systems, such as ubiquitin-proteasome systems, to disease-related proteins is an emerging concept to inhibit the function of undruggable proteins. Protein targets without reliable ligands and/or existing outside the cells where ubiquitin-proteasome systems do not exist, however, are beyond the scope of currently available protein degradation strategies. Here, we disclose photooxygenation catalyst that permeates the blood-brain barrier and selectively and directly degrades an extracellular Alzheimer's disease-related undruggable protein, amyloid-β protein (Aβ). Key was the identification of a compact but orange color visible light-activatable chemical catalyst whose activity can be switched on/off according to its molecular mobility, thereby ensuring high selectivity for aggregated Aβ. Chemical catalyst-promoted protein degradation can be applied universally for attenuating extracellular amyloids and various pathogenic proteins and is thus a new entry to induced protein degradation strategies.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abc9750