Excited-State Palladium-Catalyzed 1,2-Spin-Center Shift Enables Selective C‑2 Reduction, Deuteration, and Iodination of Carbohydrates

Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in organic synthesis because it allows access to the excited-state reaction landscape for the discovery of novel chemical reactivity. Herein, we report the first excited-state palla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-02, Vol.143 (4), p.1728-1734
Hauptverfasser: Zhao, Gaoyuan, Yao, Wang, Mauro, Jaclyn N, Ngai, Ming-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excited-state catalysis, a process that involves one or more excited catalytic species, has emerged as a powerful tool in organic synthesis because it allows access to the excited-state reaction landscape for the discovery of novel chemical reactivity. Herein, we report the first excited-state palladium-catalyzed 1,2-spin-center shift reaction that enables site-selective functionalization of carbohydrates. The strategy features mild reaction conditions with high levels of regio- and stereoselectivity that tolerate a wide range of functional groups and complex molecular architectures. Mechanistic studies suggest a radical mechanism involving the formation of hybrid palladium species that undergoes a 1,2-spin-center shift followed by the reduction, deuteration, and iodination to afford functionalized 2-deoxy sugars. The new reactivity will provide a general approach for the rapid generation of natural and unnatural carbohydrates.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c11209