Detection of pneumonia infection in lungs from chest X-ray images using deep convolutional neural network and content-based image retrieval techniques

In this research, A Deep Convolutional Neural Network was proposed to detect Pneumonia infection in the lung using Chest X-ray images. The proposed Deep CNN models were trained with a Pneumonia Chest X-ray Dataset containing 12,000 images of infected and not infected chest X-ray images. The dataset...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2021-03, p.1-8
Hauptverfasser: Rajasenbagam, T, Jeyanthi, S, Pandian, J Arun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, A Deep Convolutional Neural Network was proposed to detect Pneumonia infection in the lung using Chest X-ray images. The proposed Deep CNN models were trained with a Pneumonia Chest X-ray Dataset containing 12,000 images of infected and not infected chest X-ray images. The dataset was preprocessed and developed from the Chest X-ray8 dataset. The Content-based image retrieval technique was used to annotate the images in the dataset using Metadata and further contents. The data augmentation techniques were used to increase the number of images in each of class. The basic manipulation techniques and Deep Convolutional Generative Adversarial Network (DCGAN) were used to create the augmented images. The VGG19 network was used to develop the proposed Deep CNN model. The classification accuracy of the proposed Deep CNN model was 99.34 percent in the unseen chest X-ray images. The performance of the proposed deep CNN was compared with state-of-the-art transfer learning techniques such as AlexNet, VGG16Net and InceptionNet. The comparison results show that the classification performance of the proposed Deep CNN model was greater than the other techniques.
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-021-03075-2