Loose programming of GIS workflows with geo‐analytical concepts
Loose programming enables analysts to program with concepts instead of procedural code. Data transformations are left underspecified, leaving out procedural details and exploiting knowledge about the applicability of functions to data types. To synthesize workflows of high quality for a geo‐analytic...
Gespeichert in:
Veröffentlicht in: | Transactions in GIS 2021-02, Vol.25 (1), p.424-449 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Loose programming enables analysts to program with concepts instead of procedural code. Data transformations are left underspecified, leaving out procedural details and exploiting knowledge about the applicability of functions to data types. To synthesize workflows of high quality for a geo‐analytical task, the semantic type system needs to reflect knowledge of geographic information systems (GIS) at a level that is deep enough to capture geo‐analytical concepts and intentions, yet shallow enough to generalize over GIS implementations. Recently, core concepts of spatial information and related geo‐analytical concepts were proposed as a way to add the required ion level to current geodata models. The core concept data types (CCD) ontology is a semantic type system that can be used to constrain GIS functions for workflow synthesis. However, to date, it is unknown what gain in precision and workflow quality can be expected. In this article we synthesize workflows by annotating GIS tools with these types, specifying a range of common analytical tasks taken from an urban livability scenario. We measure the quality of automatically synthesized workflows against a benchmark generated from common data types. Results show that CCD concepts significantly improve the precision of workflow synthesis. |
---|---|
ISSN: | 1361-1682 1467-9671 |
DOI: | 10.1111/tgis.12692 |