Neural changes following equine‐assisted therapy for posttraumatic stress disorder: A longitudinal multimodal imaging study
Background While effective treatments for posttraumatic stress disorder (PTSD) exist, many individuals, including military personnel and veterans fail to respond to them. Equine‐assisted therapy (EAT), a novel PTSD treatment, may complement existing PTSD interventions. This study employs longitudina...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2021-04, Vol.42 (6), p.1930-1939 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
While effective treatments for posttraumatic stress disorder (PTSD) exist, many individuals, including military personnel and veterans fail to respond to them. Equine‐assisted therapy (EAT), a novel PTSD treatment, may complement existing PTSD interventions. This study employs longitudinal neuro‐imaging, including structural magnetic resonance imaging (sMRI), resting state‐fMRI (rs‐fMRI), and diffusion tensor imaging (DTI), to determine mechanisms and predictors of EAT outcomes for PTSD.
Method
Nineteen veterans with PTSD completed eight weekly group sessions of EAT undergoing multimodal MRI assessments before and after treatment. Clinical assessments were conducted at baseline, post‐treatment and at 3‐month follow‐up.
Results
At post‐treatment patients showed a significant increase in caudate functional connectivity (FC) and reduction in the gray matter density of the thalamus and the caudate. The increase of caudate FC was positively associated with clinical improvement seen immediately at post‐treatment and at 3‐month follow‐up. In addition, higher baseline caudate FC was associated with greater PTSD symptom reduction post‐treatment.
Conclusions
This exploratory study is the first to demonstrate that EAT can affect functional and structural changes in the brains of patients with PTSD. The findings suggest that EAT may target reward circuitry responsiveness and produce a caudate pruning effect from pre‐ to post‐treatment.
This study employs longitudinal neuro‐imaging, including structural magnetic resonance imaging (sMRI), resting state‐fMRI (rs‐fMRI), and diffusion tensor imaging (DTI), to determine mechanisms and predictors of EAT outcomes for PTSD. |
---|---|
ISSN: | 1065-9471 1097-0193 |
DOI: | 10.1002/hbm.25360 |