Diffusion Tensor Tractography of the Limbic System

The limbic system, relevant to memory and emotion, is an interesting subject of study in healthy and diseased individuals. It consists of a network of gray matter structures interconnected by white matter fibers. Although gray matter components of this system have been studied by using MR imaging, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Neuroradiology 2005-10, Vol.26 (9), p.2267-2274
Hauptverfasser: Concha, Luis, Gross, Donald W, Beaulieu, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The limbic system, relevant to memory and emotion, is an interesting subject of study in healthy and diseased individuals. It consists of a network of gray matter structures interconnected by white matter fibers. Although gray matter components of this system have been studied by using MR imaging, the connecting fibers have not been analyzed to the same degree. Cerebrospinal fluid (CSF) signal intensity contamination of the fornix and cingulum, the 2 major white matter tracts of the limbic system, can alter diffusion-tensor imaging (DTI) measurements and affect tractography. We investigated the effect of CSF signal intensity suppression on fiber tracking of the limbic connections and characterized the diffusion properties of these structures in healthy volunteers. Nine healthy individuals were scanned with standard and CSF-suppressed DTI. Tractography of the fornix and cingulum was performed for both acquisition methods. We report mean diffusivity and fractional anisotropy measurements of the crus, body, and columns of the fornix, and descending, superior, and anterior portions of the cingulum. Diffusion measurements were improved and tractography was facilitated by using CSF-suppressed DTI. In particular, tract volume increased, whereas decreases of the mean diffusivity and increases of diffusion anisotropy more accurately represented the underlying tissue by minimizing deleterious partial volume averaging from CSF. This was particularly true for the fornix because it is in closest contact to CSF. Diffusion measurements throughout the limbic connections were consistent in healthy volunteers. We recommend the use of CSF suppression when performing diffusion-tensor tractography of the limbic system.
ISSN:0195-6108
1936-959X
1432-1920