Peroxisomal Biogenesis Disorder: Comparison of Conventional MR Imaging with Diffusion-Weighted and Diffusion-Tensor Imaging Findings
Peroxisomal biogenesis disorders (PBDs) refer to a group of disorders of peroxisomal biogenesis causing neuronal migration disorder, delayed myelination, and demyelination. The aim of this study was to evaluate the added value of diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) co...
Gespeichert in:
Veröffentlicht in: | American journal of neuroradiology : AJNR 2004-06, Vol.25 (6), p.1022-1027 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Peroxisomal biogenesis disorders (PBDs) refer to a group of disorders of peroxisomal biogenesis causing neuronal migration disorder, delayed myelination, and demyelination. The aim of this study was to evaluate the added value of diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) compared with that of conventional T2-weighted imaging in assessing the extent of white matter damage in patients with PBDs.
Three patients (aged 12, 16, and 80 months) with PBD (type 1 protein targeting sequence [PTS1]) and three age-matched control subjects underwent MR imaging on a 1.5-T system. The protocol included axial T2-weighted, DWI, and DTI sequences. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) changes were calculated using regions of interest at several predefined white matter areas and compared with those of age-matched control subjects. Color-coded maps were obtained to visualize the range of FA values.
On the T2-weighted images, one patient revealed severe hypomyelination throughout the brain; the two other patients showed focal abnormal high-signal-intensity areas. All patients had significantly decreased FA values in white matter areas that appeared abnormal on the T2-weighted images. In two of the three patients, significant FA reduction was also found in normal-appearing white matter. The ADC values of the patients were significantly increased compared with those of the age-matched controls.
Although based on a small number of patients, our data suggest that DWI and DTI can be used to characterize and quantify white matter tract injury in patients with PBD-PTS1. Furthermore, our data suggest that these techniques have the potential to identify neurodegenerative changes not yet visible on T2-weighted images. |
---|---|
ISSN: | 0195-6108 1936-959X |