The lysosomotrope GPN mobilises Ca2+ from acidic organelles
Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. Glycyl-L-phenylalanine 2-naphthylamide (GPN) is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. However, whether these signals are the result of a primary...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2021-03, Vol.134 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. Glycyl-L-phenylalanine 2-naphthylamide (GPN) is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. However, whether these signals are the result of a primary action on lysosomes is unclear in light of recent evidence showing that GPN mediates direct ER Ca2+ release through changes in cytosolic pH. Here, we show that GPN evoked rapid increases in cytosolic pH but slower Ca2+ signals. NH4Cl evoked comparable changes in pH but failed to affect Ca2+. The V-type ATPase inhibitor, bafilomycin A1, increased lysosomal pH over a period of hours. Acute treatment modestly affected lysosomal pH and potentiated Ca2+ signals evoked by GPN. In contrast, chronic treatment led to more profound changes in luminal pH and selectively inhibited GPN action. GPN blocked Ca2+ responses evoked by the novel nicotinic acid adenine dinucleotide phosphate-like agonist, TPC2-A1-N. Therefore, GPN-evoked Ca2+ signals were better correlated with associated pH changes in the lysosome compared to the cytosol, and were coupled to lysosomal Ca2+ release. We conclude that Ca2+ signals evoked by GPN most likely derive from acidic organelles. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.256578 |