Microstructural integrity of cerebral fiber tracts in hereditary spastic paraparesis with SPG11 mutation

ARHSP-TCC is characterized by progressive leg spasticity, ataxia, and cognitive dysfunction. Although mutations in the human SPG11 gene were identified as responsible for ARHSP-TCC, the cerebral fiber integrity has not been assessed systemically. The objective of this study was to assess cerebral fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of neuroradiology : AJNR 2013-05, Vol.34 (5), p.990-996
Hauptverfasser: Pan, M-K, Huang, S-C, Lo, Y-C, Yang, Chih-Chao, Cheng, T-W, Yang, Chi-Cheng, Hua, M-S, Lee, M-J, Tseng, W-Y I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ARHSP-TCC is characterized by progressive leg spasticity, ataxia, and cognitive dysfunction. Although mutations in the human SPG11 gene were identified as responsible for ARHSP-TCC, the cerebral fiber integrity has not been assessed systemically. The objective of this study was to assess cerebral fiber integrity and its clinical significance in patients with ARHSP-TCC. Five patients from 2 families who were clinically and genetically confirmed to have ARHSP-TCC were examined by neuropsychological evaluation and DSI of the brain. We performed voxel-based GFA analysis for global white matter evaluation, tractography-based analysis for tract-to-tract comparisons, and tract-specific analysis of the CST to evaluate microstructural integrity along the axonal direction. The neuropsychological evaluation revealed widespread cognitive decline across all domains. Voxel-based analysis showed global reduction of GFA in the cerebral white matter. Tractography-based analysis revealed a significant reduction of the microstructural integrity in all neural fiber types, while commissure and association fibers had more GFA reduction than projection fibers (P < .00001). Prefrontal and motor portions of the CC were most severely affected among all fiber tracts (P < .00001, P = .018). Tract-specific analysis of the CST validated a "dying-back" phenomenon (R(2) = 0.68, P < .00001). There was a characteristic gradation in the reduction of microstructural integrity among fiber types and within the CC in patients with the SPG11 mutation. The dying-back process in CST might explain the pathogenic mechanisms for ARHSP-TCC.
ISSN:0195-6108
1936-959X
DOI:10.3174/ajnr.A3330