Potential of Using Wood Biomass Ash in Low-Strength Composites
Reducing greenhouse gas emissions and dependence on fossil fuels is the cornerstone of all European climate and energy strategies. Consequently, renewable energy sources are becoming more competitive with fossil fuels. The largest source of bioenergy in the European Union is biomass-fired power plan...
Gespeichert in:
Veröffentlicht in: | Materials 2021-03, Vol.14 (5), p.1250, Article 1250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reducing greenhouse gas emissions and dependence on fossil fuels is the cornerstone of all European climate and energy strategies. Consequently, renewable energy sources are becoming more competitive with fossil fuels. The largest source of bioenergy in the European Union is biomass-fired power plants. Therefore, the European coal phase-out strategy led to an increased use of wood biomass as a sustainable fuel, generating large amounts of wood biomass ash (WBA). In the research studies reported so far, WBA has been mainly used in cementitious composites. However, given the similarities between the chemical composition of WBA and hydraulic lime (HL), this research focused on its potential classification as a building lime. Overall, three different sources of fly WBA were considered for the preparation of binders as mixtures of WBA and coal fly ash (CFA) in different ratios. The contribution of each binder mixture on the paste and mortar properties was analyzed based on the chemical composition, setting time, volume stability, and contribution to the mortar strength (compressive and flexural). In general, it can be concluded that the studied binders can meet the criteria of EN 459-1. However, special attention should be paid to the volume deformations and the setting time. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14051250 |