Mg2+ Doping Effects on the Structural and Dielectric Properties of CaCu3Ti4O12 Ceramics Obtained by Mechanochemical Synthesis

In this study, ceramic CaCu3Ti4O12 (CCTO) and CaCu3−xMgxTi4O12 solid solutions in which 0.1 ≤ x ≤ 0.5 were prepared by the mechanochemical method, realized by a high-energy ball milling technique. The effects of the Mg2+ ion concentration and sintering time on the dielectric response in the prepared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-03, Vol.14 (5), p.1187
Hauptverfasser: Dulian, Piotr, Bąk, Wojciech, Piz, Mateusz, Garbarz-Glos, Barbara, Sachuk, Olena V., Wieczorek-Ciurowa, Krystyna, Lisińska-Czekaj, Agata, Czekaj, Dionizy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, ceramic CaCu3Ti4O12 (CCTO) and CaCu3−xMgxTi4O12 solid solutions in which 0.1 ≤ x ≤ 0.5 were prepared by the mechanochemical method, realized by a high-energy ball milling technique. The effects of the Mg2+ ion concentration and sintering time on the dielectric response in the prepared ceramics were investigated and discussed. It was demonstrated that, by the use of a sufficiently high energy of mechanochemical treatment, it is possible to produce a crystalline product after only 2 h of milling the mixture of the oxide substrates. Both the addition of magnesium ions and the longer sintering time of the mechanochemically-produced ceramics cause excessive grain growth and significantly affect the dielectric properties of the materials. The X-ray diffraction (XRD) analysis showed that all of the as-prepared solid solutions, CaCu3−xMgxTi4O12 (0.0 ≤ x ≤ 0.5), regardless of the sintering time, exhibit a cubic perovskite single phase. The dielectric study showed two major contributions associated with the grains and the grain boundaries. The analysis of the electric modules of these ceramics confirmed the occurrence of Maxwell–Wagner type relaxation, which is dependent on the temperature.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14051187