Ultimate Load-Carrying Ability of Rib-Stiffened 2024-T3 and 7075-T6 Aluminium Alloy Panels under Axial Compression
Stringer-stiffened panels made of aluminium alloys are often used as structural elements in the aircraft industry. The load-carrying capacity of this type of structure cannot relieve the reduction in strength in the event of local buckling. In this paper, a method of fabrication of rib-stiffened pan...
Gespeichert in:
Veröffentlicht in: | Materials 2021-03, Vol.14 (5), p.1176 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stringer-stiffened panels made of aluminium alloys are often used as structural elements in the aircraft industry. The load-carrying capacity of this type of structure cannot relieve the reduction in strength in the event of local buckling. In this paper, a method of fabrication of rib-stiffened panels made of EN AW-2024-T3 Alclad and EN AW-7075-T6 Alclad has been proposed using single point incremental forming. Panels made of sheets of different thickness and with different values of forming parameters were tested under the axial compression test. A digital image correlation (DIC)-based system was used to find the distribution of strain in the panels. The results of the axial compression tests revealed that the panels had two distinct buckling modes: (i) The panels buckled halfway up the panel height towards the rib, without any appreciable loss of rib stability, and (ii) the rib first lost stability at half its height with associated breakage, and then the panel was deflected in the opposite direction to the position of the rib. Different buckling modes can be associated with the character of transverse and longitudinal springback of panels resulting from local interaction of the rotating tool on the surface of the formed ribs. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14051176 |