COVID-19 dynamics considering the influence of hospital infrastructure: an investigation into Brazilian scenarios

COVID-19 dynamics is one of the most relevant subjects nowadays, and, in this regard, mathematical modeling and numerical simulations are of special interest. This paper describes COVID-19 dynamics based on a novel version of the susceptible–exposed–infectious–removed model. Removed population is sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-10, Vol.106 (2), p.1325-1346
Hauptverfasser: Pacheco, Pedro M. C. L., Savi, Marcelo A., Savi, Pedro V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:COVID-19 dynamics is one of the most relevant subjects nowadays, and, in this regard, mathematical modeling and numerical simulations are of special interest. This paper describes COVID-19 dynamics based on a novel version of the susceptible–exposed–infectious–removed model. Removed population is split into recovered and death populations allowing a better comprehension of real situations. Besides, the total population is reduced based on the number of deaths. Hospital infrastructure is also included into the mathematical description allowing the consideration of collapse scenarios. Initially, a model verification is carried out calibrating system parameters with data from China outbreak that is considered a benchmark due the availability of data for the entire cycle. Afterward, Brazil outbreak is of concern, calibrating the model and developing numerical simulations. Results show several scenarios highlighting the importance of social isolation and hospital infrastructure. System dynamics has a strong sensitivity to transmission rate showing the importance of numerical simulations to guide public health decision strategies. Results also show that complex dynamical responses can emerge due to the oscillations of the transmission rate, being associated with distinct infection subsequent waves.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-06323-4