Phospho-valproic acid (MDC-1112) reduces pancreatic cancer growth in patient-derived tumor xenografts and KPC mice: enhanced efficacy when combined with gemcitabine
Abstract New chemotherapeutic agents are needed for pancreatic cancer (PC). We have previously shown that phospho-valproic acid (MDC-1112) is effective in cell-line xenografts of PC. Here, we explored whether MDC-1112 is effective in additional clinically relevant animal models of PC and whether MDC...
Gespeichert in:
Veröffentlicht in: | Carcinogenesis (New York) 2020-07, Vol.41 (7), p.927-939 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
New chemotherapeutic agents are needed for pancreatic cancer (PC). We have previously shown that phospho-valproic acid (MDC-1112) is effective in cell-line xenografts of PC. Here, we explored whether MDC-1112 is effective in additional clinically relevant animal models of PC and whether MDC-1112 enhances the anticancer effect of clinically used chemotherapeutic agents. MDC-1112 alone strongly reduced patient-derived pancreatic tumor xenograft growth, and extended survival of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mice. In both models, MDC-1112 inhibited STAT3 activation and its downstream signals, including Bcl-xL and cyclin D1. In human PC cell lines, P-V enhanced the growth inhibitory effect of gemcitabine (GEM), Abraxane and 5-FU, but not that of irinotecan. Normal human pancreatic epithelial cells were more resistant to the cytotoxic effects of MDC-1112/GEM combination. Furthermore, MDC-1112 enhanced GEM’s effect on colony formation, apoptosis, cell migration, and cell invasion. In vivo, MDC-1112 and GEM, given alone, reduced patient-derived pancreatic tumor xenograft growth by 58% and 87%, respectively; whereas MDC-1112/GEM combination reduced tumor growth by 94%, inducing tumor stasis. In conclusion, MDC-1112 should be further explored as a potential agent to be used in combination with GEM for treating PC. |
---|---|
ISSN: | 0143-3334 1460-2180 |
DOI: | 10.1093/carcin/bgz170 |