Subepidermal moisture (SEM) and bioimpedance: a literature review of a novel method for early detection of pressure‐induced tissue damage (pressure ulcers)

Current detection of pressure ulcers relies on visual and tactile changes at the skin surface, but physiological changes below the skin precede surface changes and have a significant impact on tissue health. Inflammatory and apoptotic/necrotic changes in the epidermal and dermal layers of the skin,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International wound journal 2017-04, Vol.14 (2), p.331-337
Hauptverfasser: Moore, Zena, Patton, Declan, Rhodes, Shannon L, O'Connor, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current detection of pressure ulcers relies on visual and tactile changes at the skin surface, but physiological changes below the skin precede surface changes and have a significant impact on tissue health. Inflammatory and apoptotic/necrotic changes in the epidermal and dermal layers of the skin, such as changes in interstitial fluid (also known as subepidermal moisture (SEM)), may precede surface changes by 3–10 days. Those same epidermal and subepidermal changes result in changes in the electrical properties (bioimpedance) of the tissue, thereby presenting an objective, non‐invasive method for assessing tissue damage. Clinical studies of bioimpedance for the detection of pressure ulcers have demonstrated that changes in bioimpedance correlate with increasing severity of pressure ulcer stages. Studies have also demonstrated that at anatomical locations with pressure ulcers, bioimpedance varies with distance from the centre of the pressure ulcers. The SEM Scanner, a handheld medical device, offers an objective and reliable method for the assessment of local bioimpedance, and therefore, assessment of tissue damage before signs become visible to the unaided eye. This literature review summarises pressure ulcer pathophysiology, principles of bioimpedance and clinical research using bioimpedance technology to assess pressure ulcers.
ISSN:1742-4801
1742-481X
DOI:10.1111/iwj.12604