Development and Characterization of a Probe Device toward Intracranial Spectroscopy of Traumatic Brain Injury
Traumatic brain injury is a leading cause of mortality worldwide, often affecting individuals at their most economically active yet no primary disease-modifying interventions exist for their treatment. Real-time direct spectroscopic examination of the brain tissue within the context of traumatic bra...
Gespeichert in:
Veröffentlicht in: | ACS biomaterials science & engineering 2021-03, Vol.7 (3), p.1252-1262 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traumatic brain injury is a leading cause of mortality worldwide, often affecting individuals at their most economically active yet no primary disease-modifying interventions exist for their treatment. Real-time direct spectroscopic examination of the brain tissue within the context of traumatic brain injury has the potential to improve the understanding of injury heterogeneity and subtypes, better target management strategies and organ penetrance of pharmacological agents, identify novel targets for intervention, and allow a clearer understanding of fundamental biochemistry evolution. Here, a novel device is designed and engineered, delivering Raman spectroscopy-based measurements from the brain through clinically established cranial access techniques. Device prototyping is undertaken within the constraints imposed by the acquisition and site dimensions (standard intracranial access holes, probe’s dimensions), and an artificial skull anatomical model with cortical impact is developed. The device shows a good agreement with the data acquired via a standard commercial Raman, and the spectra measured are comparable in terms of quality and detectable bands to the established traumatic brain injury model. The developed proof-of-concept device demonstrates the feasibility for real-time optical brain spectroscopic interface while removing the noise of extracranial tissue and with further optimization and in vivo validation, such technology will be directly translatable for integration into currently available standards of neurological care. |
---|---|
ISSN: | 2373-9878 2373-9878 |
DOI: | 10.1021/acsbiomaterials.0c01156 |