Deubiquitinase OTUD5 is a positive regulator of mTORC1 and mTORC2 signaling pathways

The mammalian Target of Rapamycin (mTOR) pathway regulates a variety of physiological processes, including cell growth and cancer progression. The regulatory mechanisms of these signals are extremely complex and comprise many feedback loops. Here, we identified the deubiquitinating enzyme ovarian tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2021-03, Vol.28 (3), p.900-914
Hauptverfasser: Cho, Jin Hwa, Kim, Kidae, Kim, Sung Ah, Park, Sungryul, Park, Bi-Oh, Kim, Jong-Hwan, Kim, Seon-Young, Kwon, Min Jee, Han, Myeong Hoon, Lee, Sung Bae, Park, Byoung Chul, Park, Sung Goo, Kim, Jeong-Hoon, Kim, Sunhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mammalian Target of Rapamycin (mTOR) pathway regulates a variety of physiological processes, including cell growth and cancer progression. The regulatory mechanisms of these signals are extremely complex and comprise many feedback loops. Here, we identified the deubiquitinating enzyme ovarian tumor domain-containing protein 5 (OTUD5) as a novel positive regulator of the mTOR complex (mTORC) 1 and 2 signaling pathways. We demonstrated that OTUD5 stabilized β-transducin repeat-containing protein 1 (βTrCP1) proteins via its deubiquitinase (DUB) activity, leading to the degradation of Disheveled, Egl-10, and pleckstrin domain-containing mTOR-interacting protein (DEPTOR), which is an inhibitory protein of mTORC1 and 2. We also showed that mTOR directly phosphorylated OTUD5 and activated its DUB activity. RNA sequencing analysis revealed that OTUD5 regulates the downstream gene expression of mTOR. Additionally, OTUD5 depletion elicited several mTOR-related phenotypes such as decreased cell size and increased autophagy in mammalian cells as well as the suppression of a dRheb -induced curled wing phenotype by RNA interference of Duba , a fly ortholog of OTUD5 , in Drosophila melanogaster . Furthermore, OTUD5 knockdown inhibited the proliferation of the cancer cell lines with mutations activating mTOR pathway. Our results suggested a positive feedback loop between OTUD5 and mTOR signaling pathway.
ISSN:1350-9047
1476-5403
DOI:10.1038/s41418-020-00649-z