Impacts of electronic cigarettes usage on air quality of vape shops and their nearby areas

With the rapid growth of the electronic cigarette (e-cig) market, there is an increasing number of vape shops that exclusively sell e-cigs. The use of e-cigs in the vape shop is a primary source of indoor particles, which might transport to its nearby indoor spaces in the multiunit setting. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2021-03, Vol.760, p.143423-143423, Article 143423
Hauptverfasser: Li, Liqiao, Nguyen, Charlene, Lin, Yan, Guo, Yuening, Fadel, Nour Abou, Zhu, Yifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid growth of the electronic cigarette (e-cig) market, there is an increasing number of vape shops that exclusively sell e-cigs. The use of e-cigs in the vape shop is a primary source of indoor particles, which might transport to its nearby indoor spaces in the multiunit setting. In this study, six pairs of vape shops and neighboring businesses in Southern California were recruited for real-time measurements of particulate pollutants between February 2017 and October 2019. The mean (SD) particle number concentration (PNC) and PM2.5 concentration in the studied vape shops were 2.8 × 104 (2.3 × 104) particles/cm3 and 276 (546) μg/m3, which were substantially higher than those in neighboring businesses and outdoor areas. In addition, 24-h time-weighted average (TWA) nicotine sampling was conducted in the six pairs and three additional pairs. Nicotine was detected in the air of all the studied vape shops and neighboring businesses, in which the mean (SD) concentration was 2.59 (1.02) and 0.17 (0.13) μg/m3, respectively. Inside vape shops, the dilution-corrected vaping density (puffs/h/100 m3) is a strong predictor of the particle concentration, and nicotine concentration highly depends on the air exchange rate (AER). Out of the six studied pairs, PNCs in five vape shops and PM2.5 in two vape shops were significantly correlated with those in their neighboring businesses. This correlation was stronger when the door of the vape shop was closed. When the door was open, environmental electronic vaping (EEV) aerosols, especially smaller particles, could transport from the vape shop to the outdoor environment. Overall, e-cig usage in the vape shop impacts both its own and nearby air quality, raising concerns regarding the risk of exposure to EEV aerosols in the surrounding environments. [Display omitted] •Air pollutants were measured concurrently in vape shops and neighboring businesses.•Nicotine was detected in all the studied vape shops and neighboring businesses.•Exhaled e-cig aerosols can transfer to nearby spaces in multiunit buildings.•Ultrafine particles were more likely to transport to the outdoor environment.•Door open or close largely affected the air pollution levels in the nearby areas.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.143423