Deep Neural Networks for Optimal Team Composition

Cooperation is a fundamental social mechanism, whose effects on human performance have been investigated in several environments. Online games are modern-days natural settings in which cooperation strongly affects human behavior. Every day, millions of players connect and play together in team-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in big data 2019-06, Vol.2, p.14-14
Hauptverfasser: Sapienza, Anna, Goyal, Palash, Ferrara, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cooperation is a fundamental social mechanism, whose effects on human performance have been investigated in several environments. Online games are modern-days natural settings in which cooperation strongly affects human behavior. Every day, millions of players connect and play together in team-based games: the patterns of cooperation can either foster or hinder individual skill learning and performance. This work has three goals: (i) identifying teammates' influence on players' performance in the short and long term, (ii) designing a computational framework to recommend teammates to improve players' performance, and (iii) setting to demonstrate that such improvements can be predicted via deep learning. We leverage a large dataset from Dota 2, a popular Multiplayer Online Battle Arena game. We generate a directed co-play network, whose links' weights depict the effect of teammates on players' performance. Specifically, we propose a measure of network influence that captures skill transfer from player to player over time. We then use such framing to design a recommendation system to suggest new teammates based on a modified deep neural autoencoder and we demonstrate its state-of-the-art recommendation performance. We finally provide insights into skill transfer effects: our experimental results demonstrate that such dynamics can be predicted using deep neural networks.
ISSN:2624-909X
2624-909X
DOI:10.3389/fdata.2019.00014