New Results on Superlinear Convergence of Classical Quasi-Newton Methods

We present a new theoretical analysis of local superlinear convergence of classical quasi-Newton methods from the convex Broyden class. As a result, we obtain a significant improvement in the currently known estimates of the convergence rates for these methods. In particular, we show that the corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2021-03, Vol.188 (3), p.744-769
Hauptverfasser: Rodomanov, Anton, Nesterov, Yurii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new theoretical analysis of local superlinear convergence of classical quasi-Newton methods from the convex Broyden class. As a result, we obtain a significant improvement in the currently known estimates of the convergence rates for these methods. In particular, we show that the corresponding rate of the Broyden–Fletcher–Goldfarb–Shanno method depends only on the product of the dimensionality of the problem and the logarithm of its condition number.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01805-8