Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment

Abstract The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2021-03, Vol.22 (2), p.1430-1441
Hauptverfasser: Pavel, Alisa, del Giudice, Giusy, Federico, Antonio, Di Lieto, Antonio, Kinaret, Pia A S, Serra, Angela, Greco, Dario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbaa417