Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input

Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than nonnative ones. For example, between 6 to 8 mo and 10 to 12 mo, infants learning American English get better at distinguishing English [ɹ] and [l], as in “...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-02, Vol.118 (7), p.1-12
Hauptverfasser: Schatz, Thomas, Feldman, Naomi H., Goldwater, Sharon, Cao, Xuan-Nga, Dupoux, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than nonnative ones. For example, between 6 to 8 mo and 10 to 12 mo, infants learning American English get better at distinguishing English [ɹ] and [l], as in “rock” vs. “lock,” relative to infants learning Japanese. Influential accounts of this early phonetic learning phenomenon initially proposed that infants group sounds into native vowel- and consonant-like phonetic categories—like [ɹ] and [l] in English—through a statistical clustering mechanism dubbed “distributional learning.” The feasibility of this mechanism for learning phonetic categories has been challenged, however. Here, we demonstrate that a distributional learning algorithm operating on naturalistic speech can predict early phonetic learning, as observed in Japanese and American English infants, suggesting that infants might learn through distributional learning after all. We further show, however, that, contrary to the original distributional learning proposal, our model learns units too brief and too fine-grained acoustically to correspond to phonetic categories. This challenges the influential idea that what infants learn are phonetic categories. More broadly, our work introduces a mechanism-driven approach to the study of early phonetic learning, together with a quantitative modeling framework that can handle realistic input. This allows accounts of early phonetic learning to be linked to concrete, systematic predictions regarding infants’ attunement.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2001844118