An innovative and user-friendly smartphone-assisted molecular diagnostic approach for rapid detection of canine vector-borne diseases

Present-day diagnostic tools and technologies for canine diseases and other vector-borne parasitic diseases hardly meet the requirements of an efficient and rapid diagnostic tool, which can be suitable for use at the point-of-care in resource-limited settings. Loop-mediated isothermal amplification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasitology research (1987) 2021-05, Vol.120 (5), p.1799-1809
Hauptverfasser: Upadhyay, Archana, Waleed, Raza Muhammad, Wang, Jinhua, Zhao, Jianguo, Guan, Qingfeng, Liao, Chenghong, Han, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present-day diagnostic tools and technologies for canine diseases and other vector-borne parasitic diseases hardly meet the requirements of an efficient and rapid diagnostic tool, which can be suitable for use at the point-of-care in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been always a method of choice in the development and validation of quick, precise, and sensitive diagnostic assays for pathogen detection and to reorganize point-of-care (POC) molecular diagnostics. In this study, we have demonstrated an efficient detection system for parasitic vector-borne pathogens like Ehrlichia canis and Hepatozoon canis by linking the LAMP assay to a smartphone via a simple, inexpensive, and a portable “LAMP box,” All the components of the LAMP box were connected to each other wirelessly. This LAMP box was made up of an isothermal heating pad mounted below an aluminum base which served as a platform for the reaction tubes and LAMP assay. The entire setup could be connected to a smartphone via an inbuilt Wi-Fi that allowed the user to establish the connection to control the LAMP box. A 5 V USB power source was used as a power supply. The sensitivity of the LAMP assay was estimated to be up to 10 −6 dilution limit using the amplified, purified, and quantified specific DNA templates. It can also serve as an efficient diagnostic platform for many other veterinary infectious or parasitic diseases of zoonotic origin majorly towards field-based diagnostics.
ISSN:0932-0113
1432-1955
DOI:10.1007/s00436-021-07077-z