A Review on the Life Cycle Assessment of Cellulose: From Properties to the Potential of Making It a Low Carbon Material

The huge plastic production and plastic pollution are considered important global issues due to environmental aspects. One practical and efficient way to address them is to replace fossil-based plastics with natural-based materials, such as cellulose. The applications of different cellulose products...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-02, Vol.14 (4), p.714
Hauptverfasser: Foroughi, Firoozeh, Rezvani Ghomi, Erfan, Morshedi Dehaghi, Fatemeh, Borayek, Ramadan, Ramakrishna, Seeram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The huge plastic production and plastic pollution are considered important global issues due to environmental aspects. One practical and efficient way to address them is to replace fossil-based plastics with natural-based materials, such as cellulose. The applications of different cellulose products have recently received increasing attention because of their desirable properties, such as biodegradability and sustainability. In this regard, the current study initially reviews cellulose products' properties in three categories, including biopolymers based on the cellulose-derived monomer, cellulose fibers and their derivatives, and nanocellulose. The available life cycle assessments (LCA) for cellulose were comprehensively reviewed and classified at all the stages, including extraction of cellulose in various forms, manufacturing, usage, and disposal. Finally, due to the development of low-carbon materials in recent years and the importance of greenhouse gases (GHG) emissions, the proposed solutions to make cellulose a low carbon material were made. The optimization of the cellulose production process, such as the recovery of excessive solvents and using by-products as inputs for other processes, seem to be the most important step toward making it a low carbon material.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14040714