Bio-inspired synthesis of palladium nanoparticles fabricated magnetic Fe3O4 nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable catalyst for the reduction of nitroarenes

This current research is based on a bio-inspired procedure for the synthesis of biomolecule functionalized hybrid magnetic nanocomposite with the Fe 3 O 4 NPs at core and Pd NPs at outer shell. The central idea was the initial modification of magnetic NP by the phytochemicals from Fritillaria imperi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-02, Vol.11 (1), p.1-15, Article 4515
Hauptverfasser: Veisi, Hojat, Karmakar, Bikash, Tamoradi, Taiebeh, Tayebee, Reza, Sajjadifar, Sami, Lotfi, Shahram, Maleki, Behrooz, Hemmati, Saba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This current research is based on a bio-inspired procedure for the synthesis of biomolecule functionalized hybrid magnetic nanocomposite with the Fe 3 O 4 NPs at core and Pd NPs at outer shell. The central idea was the initial modification of magnetic NP by the phytochemicals from Fritillaria imperialis flower extract, which was further exploited in the green reduction of Pd 2+ ions into Pd NPs, in situ. The flower extract also acted as a capping agent for the obtained Pd/Fe 3 O 4 composite without the need of additional toxic reagents. The as-synthesized Fe 3 O 4 @ Fritillaria /Pd nanocomposite was methodically characterized over different physicochemical measures like FT-IR, ICP-AES, FESEM, EDX, TEM, XPS and VSM analysis. Thereafter, its catalytic potential was evaluated in the reduction of various nitrobenzenes to arylamines applying hydrazine hydrate as reductant in ethanol/water (1:2) medium under mild conditions. Furthermore, the nanocatalyst was retrieved using a bar magnet and recycled several times without considerable leaching or loss of activity. This green, bio-inspired ligand-free protocol has remarkable advantages like environmental friendliness, high yields, easy workup and reusability of the catalyst.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83854-1