Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content

Abstract The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior–posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2021-01, Vol.31 (2), p.1032-1045
Hauptverfasser: Lynn, Jonathan D, Anand, Chaitali, Arshad, Muzamil, Homayouni, Roya, Rosenberg, David R, Ofen, Noa, Raz, Naftali, Stanley, Jeffrey A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior–posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7–85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons. Across the lifespan, MWF exhibited a quadratic association with age in all 10 CC regions with evidence of a positive linear MWF-age relationship among younger participants and minimal age differences in the remainder of the lifespan. Regarding geomT2IEW, a significant linear age × region interaction reflected positive linear age dependence mostly prominent in the regions with the highest density of small-caliber fibers—genu and splenium. In all, these two indicators characterize distinct attributes that are consistent with histology, which is a first. In addition, these results conform to rapid developmental progression of CC myelination leveling in middle age as well as age-related degradation of axon sheaths in older adults.
ISSN:1047-3211
1460-2199
1460-2199
DOI:10.1093/cercor/bhaa272