Real‐time device tracking under MRI using an acousto‐optic active marker
Purpose This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI. Methods The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2021-05, Vol.85 (5), p.2904-2914 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2914 |
---|---|
container_issue | 5 |
container_start_page | 2904 |
container_title | Magnetic resonance in medicine |
container_volume | 85 |
creator | Yaras, Yusuf S. Yildirim, Dursun Korel Herzka, Daniel A. Rogers, Toby Campbell‐Washburn, Adrienne E. Lederman, Robert J. Degertekin, F. Levent Kocaturk, Ozgur |
description | Purpose
This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI.
Methods
The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner.
Results
Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence.
Conclusion
Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape. |
doi_str_mv | 10.1002/mrm.28625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7902374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484163338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWqsHX0AWvOhh6ySb3WQvghT_QYtQ9BzSdFaj-6cmuxVvPoLP6JMYrYoKnsKQ33zzzXyE7FAYUAB2WLlqwGTG0hXSoyljMUtzvkp6IDjECc35Btn0_g4A8lzwdbKRJAkXGWc9MpqgLl-fX1pbYTTDhTUYtU6be1vfRF09QxeNJxdR599rXUfaNJ1vm9DRzFtrQt3aBUaVdvfotshaoUuP259vn1yfnlwNz-PR5dnF8HgUG86TNOaUmoIXFBOQJtP5lAmRZ4wZiTzVeqY5M6ABUEqhkSMATVMpC2EEo1MxTfrkaKk776YVzgzWwXKp5s4GH0-q0Vb9_qntrbppFkrkwBLBg8D-p4BrHjr0raqsN1iWusawn2I8TIJUZhDQvT_oXdO5OqwXKMlpFm4pA3WwpIxrvHdYfJuhoN4zUiEj9ZFRYHd_uv8mv0IJwOESeLQlPv2vpMaT8VLyDcHonO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484163338</pqid></control><display><type>article</type><title>Real‐time device tracking under MRI using an acousto‐optic active marker</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Yaras, Yusuf S. ; Yildirim, Dursun Korel ; Herzka, Daniel A. ; Rogers, Toby ; Campbell‐Washburn, Adrienne E. ; Lederman, Robert J. ; Degertekin, F. Levent ; Kocaturk, Ozgur</creator><creatorcontrib>Yaras, Yusuf S. ; Yildirim, Dursun Korel ; Herzka, Daniel A. ; Rogers, Toby ; Campbell‐Washburn, Adrienne E. ; Lederman, Robert J. ; Degertekin, F. Levent ; Kocaturk, Ozgur</creatorcontrib><description>Purpose
This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI.
Methods
The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner.
Results
Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence.
Conclusion
Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28625</identifier><identifier>PMID: 33347642</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>acousto‐optic modulation ; active devices ; Animal models ; Animals ; Bragg gratings ; catheter ; Catheters ; Equipment Design ; fiber optic sensor ; Heating ; interventional MRI ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging, Interventional ; Markers ; Medical instruments ; Optical communication ; Optical fibers ; Optics ; Phantoms, Imaging ; Piezoelectric crystals ; Piezoelectric transducers ; Position sensing ; Radio frequency ; real‐time tracking ; Tracking devices</subject><ispartof>Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2904-2914</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><rights>2021 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</citedby><cites>FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</cites><orcidid>0000-0002-1117-559X ; 0000-0002-7169-5693 ; 0000-0002-1145-939X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28625$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28625$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33347642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaras, Yusuf S.</creatorcontrib><creatorcontrib>Yildirim, Dursun Korel</creatorcontrib><creatorcontrib>Herzka, Daniel A.</creatorcontrib><creatorcontrib>Rogers, Toby</creatorcontrib><creatorcontrib>Campbell‐Washburn, Adrienne E.</creatorcontrib><creatorcontrib>Lederman, Robert J.</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><creatorcontrib>Kocaturk, Ozgur</creatorcontrib><title>Real‐time device tracking under MRI using an acousto‐optic active marker</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI.
Methods
The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner.
Results
Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence.
Conclusion
Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.</description><subject>acousto‐optic modulation</subject><subject>active devices</subject><subject>Animal models</subject><subject>Animals</subject><subject>Bragg gratings</subject><subject>catheter</subject><subject>Catheters</subject><subject>Equipment Design</subject><subject>fiber optic sensor</subject><subject>Heating</subject><subject>interventional MRI</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging, Interventional</subject><subject>Markers</subject><subject>Medical instruments</subject><subject>Optical communication</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Phantoms, Imaging</subject><subject>Piezoelectric crystals</subject><subject>Piezoelectric transducers</subject><subject>Position sensing</subject><subject>Radio frequency</subject><subject>real‐time tracking</subject><subject>Tracking devices</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9KAzEQxoMoWqsHX0AWvOhh6ySb3WQvghT_QYtQ9BzSdFaj-6cmuxVvPoLP6JMYrYoKnsKQ33zzzXyE7FAYUAB2WLlqwGTG0hXSoyljMUtzvkp6IDjECc35Btn0_g4A8lzwdbKRJAkXGWc9MpqgLl-fX1pbYTTDhTUYtU6be1vfRF09QxeNJxdR599rXUfaNJ1vm9DRzFtrQt3aBUaVdvfotshaoUuP259vn1yfnlwNz-PR5dnF8HgUG86TNOaUmoIXFBOQJtP5lAmRZ4wZiTzVeqY5M6ABUEqhkSMATVMpC2EEo1MxTfrkaKk776YVzgzWwXKp5s4GH0-q0Vb9_qntrbppFkrkwBLBg8D-p4BrHjr0raqsN1iWusawn2I8TIJUZhDQvT_oXdO5OqwXKMlpFm4pA3WwpIxrvHdYfJuhoN4zUiEj9ZFRYHd_uv8mv0IJwOESeLQlPv2vpMaT8VLyDcHonO8</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Yaras, Yusuf S.</creator><creator>Yildirim, Dursun Korel</creator><creator>Herzka, Daniel A.</creator><creator>Rogers, Toby</creator><creator>Campbell‐Washburn, Adrienne E.</creator><creator>Lederman, Robert J.</creator><creator>Degertekin, F. Levent</creator><creator>Kocaturk, Ozgur</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1117-559X</orcidid><orcidid>https://orcid.org/0000-0002-7169-5693</orcidid><orcidid>https://orcid.org/0000-0002-1145-939X</orcidid></search><sort><creationdate>202105</creationdate><title>Real‐time device tracking under MRI using an acousto‐optic active marker</title><author>Yaras, Yusuf S. ; Yildirim, Dursun Korel ; Herzka, Daniel A. ; Rogers, Toby ; Campbell‐Washburn, Adrienne E. ; Lederman, Robert J. ; Degertekin, F. Levent ; Kocaturk, Ozgur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acousto‐optic modulation</topic><topic>active devices</topic><topic>Animal models</topic><topic>Animals</topic><topic>Bragg gratings</topic><topic>catheter</topic><topic>Catheters</topic><topic>Equipment Design</topic><topic>fiber optic sensor</topic><topic>Heating</topic><topic>interventional MRI</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging, Interventional</topic><topic>Markers</topic><topic>Medical instruments</topic><topic>Optical communication</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Phantoms, Imaging</topic><topic>Piezoelectric crystals</topic><topic>Piezoelectric transducers</topic><topic>Position sensing</topic><topic>Radio frequency</topic><topic>real‐time tracking</topic><topic>Tracking devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaras, Yusuf S.</creatorcontrib><creatorcontrib>Yildirim, Dursun Korel</creatorcontrib><creatorcontrib>Herzka, Daniel A.</creatorcontrib><creatorcontrib>Rogers, Toby</creatorcontrib><creatorcontrib>Campbell‐Washburn, Adrienne E.</creatorcontrib><creatorcontrib>Lederman, Robert J.</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><creatorcontrib>Kocaturk, Ozgur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaras, Yusuf S.</au><au>Yildirim, Dursun Korel</au><au>Herzka, Daniel A.</au><au>Rogers, Toby</au><au>Campbell‐Washburn, Adrienne E.</au><au>Lederman, Robert J.</au><au>Degertekin, F. Levent</au><au>Kocaturk, Ozgur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time device tracking under MRI using an acousto‐optic active marker</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-05</date><risdate>2021</risdate><volume>85</volume><issue>5</issue><spage>2904</spage><epage>2914</epage><pages>2904-2914</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI.
Methods
The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner.
Results
Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence.
Conclusion
Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33347642</pmid><doi>10.1002/mrm.28625</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1117-559X</orcidid><orcidid>https://orcid.org/0000-0002-7169-5693</orcidid><orcidid>https://orcid.org/0000-0002-1145-939X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2904-2914 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7902374 |
source | MEDLINE; Wiley Journals |
subjects | acousto‐optic modulation active devices Animal models Animals Bragg gratings catheter Catheters Equipment Design fiber optic sensor Heating interventional MRI Magnetic Resonance Imaging Magnetic Resonance Imaging, Interventional Markers Medical instruments Optical communication Optical fibers Optics Phantoms, Imaging Piezoelectric crystals Piezoelectric transducers Position sensing Radio frequency real‐time tracking Tracking devices |
title | Real‐time device tracking under MRI using an acousto‐optic active marker |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20device%20tracking%20under%20MRI%20using%20an%20acousto%E2%80%90optic%20active%20marker&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Yaras,%20Yusuf%20S.&rft.date=2021-05&rft.volume=85&rft.issue=5&rft.spage=2904&rft.epage=2914&rft.pages=2904-2914&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28625&rft_dat=%3Cproquest_pubme%3E2484163338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484163338&rft_id=info:pmid/33347642&rfr_iscdi=true |