Real‐time device tracking under MRI using an acousto‐optic active marker

Purpose This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI. Methods The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2021-05, Vol.85 (5), p.2904-2914
Hauptverfasser: Yaras, Yusuf S., Yildirim, Dursun Korel, Herzka, Daniel A., Rogers, Toby, Campbell‐Washburn, Adrienne E., Lederman, Robert J., Degertekin, F. Levent, Kocaturk, Ozgur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2914
container_issue 5
container_start_page 2904
container_title Magnetic resonance in medicine
container_volume 85
creator Yaras, Yusuf S.
Yildirim, Dursun Korel
Herzka, Daniel A.
Rogers, Toby
Campbell‐Washburn, Adrienne E.
Lederman, Robert J.
Degertekin, F. Levent
Kocaturk, Ozgur
description Purpose This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI. Methods The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner. Results Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence. Conclusion Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.
doi_str_mv 10.1002/mrm.28625
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7902374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484163338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWqsHX0AWvOhh6ySb3WQvghT_QYtQ9BzSdFaj-6cmuxVvPoLP6JMYrYoKnsKQ33zzzXyE7FAYUAB2WLlqwGTG0hXSoyljMUtzvkp6IDjECc35Btn0_g4A8lzwdbKRJAkXGWc9MpqgLl-fX1pbYTTDhTUYtU6be1vfRF09QxeNJxdR599rXUfaNJ1vm9DRzFtrQt3aBUaVdvfotshaoUuP259vn1yfnlwNz-PR5dnF8HgUG86TNOaUmoIXFBOQJtP5lAmRZ4wZiTzVeqY5M6ABUEqhkSMATVMpC2EEo1MxTfrkaKk776YVzgzWwXKp5s4GH0-q0Vb9_qntrbppFkrkwBLBg8D-p4BrHjr0raqsN1iWusawn2I8TIJUZhDQvT_oXdO5OqwXKMlpFm4pA3WwpIxrvHdYfJuhoN4zUiEj9ZFRYHd_uv8mv0IJwOESeLQlPv2vpMaT8VLyDcHonO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484163338</pqid></control><display><type>article</type><title>Real‐time device tracking under MRI using an acousto‐optic active marker</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Yaras, Yusuf S. ; Yildirim, Dursun Korel ; Herzka, Daniel A. ; Rogers, Toby ; Campbell‐Washburn, Adrienne E. ; Lederman, Robert J. ; Degertekin, F. Levent ; Kocaturk, Ozgur</creator><creatorcontrib>Yaras, Yusuf S. ; Yildirim, Dursun Korel ; Herzka, Daniel A. ; Rogers, Toby ; Campbell‐Washburn, Adrienne E. ; Lederman, Robert J. ; Degertekin, F. Levent ; Kocaturk, Ozgur</creatorcontrib><description>Purpose This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI. Methods The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner. Results Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence. Conclusion Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28625</identifier><identifier>PMID: 33347642</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>acousto‐optic modulation ; active devices ; Animal models ; Animals ; Bragg gratings ; catheter ; Catheters ; Equipment Design ; fiber optic sensor ; Heating ; interventional MRI ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging, Interventional ; Markers ; Medical instruments ; Optical communication ; Optical fibers ; Optics ; Phantoms, Imaging ; Piezoelectric crystals ; Piezoelectric transducers ; Position sensing ; Radio frequency ; real‐time tracking ; Tracking devices</subject><ispartof>Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2904-2914</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><rights>2021 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</citedby><cites>FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</cites><orcidid>0000-0002-1117-559X ; 0000-0002-7169-5693 ; 0000-0002-1145-939X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28625$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28625$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33347642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaras, Yusuf S.</creatorcontrib><creatorcontrib>Yildirim, Dursun Korel</creatorcontrib><creatorcontrib>Herzka, Daniel A.</creatorcontrib><creatorcontrib>Rogers, Toby</creatorcontrib><creatorcontrib>Campbell‐Washburn, Adrienne E.</creatorcontrib><creatorcontrib>Lederman, Robert J.</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><creatorcontrib>Kocaturk, Ozgur</creatorcontrib><title>Real‐time device tracking under MRI using an acousto‐optic active marker</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI. Methods The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner. Results Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence. Conclusion Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.</description><subject>acousto‐optic modulation</subject><subject>active devices</subject><subject>Animal models</subject><subject>Animals</subject><subject>Bragg gratings</subject><subject>catheter</subject><subject>Catheters</subject><subject>Equipment Design</subject><subject>fiber optic sensor</subject><subject>Heating</subject><subject>interventional MRI</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging, Interventional</subject><subject>Markers</subject><subject>Medical instruments</subject><subject>Optical communication</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Phantoms, Imaging</subject><subject>Piezoelectric crystals</subject><subject>Piezoelectric transducers</subject><subject>Position sensing</subject><subject>Radio frequency</subject><subject>real‐time tracking</subject><subject>Tracking devices</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9KAzEQxoMoWqsHX0AWvOhh6ySb3WQvghT_QYtQ9BzSdFaj-6cmuxVvPoLP6JMYrYoKnsKQ33zzzXyE7FAYUAB2WLlqwGTG0hXSoyljMUtzvkp6IDjECc35Btn0_g4A8lzwdbKRJAkXGWc9MpqgLl-fX1pbYTTDhTUYtU6be1vfRF09QxeNJxdR599rXUfaNJ1vm9DRzFtrQt3aBUaVdvfotshaoUuP259vn1yfnlwNz-PR5dnF8HgUG86TNOaUmoIXFBOQJtP5lAmRZ4wZiTzVeqY5M6ABUEqhkSMATVMpC2EEo1MxTfrkaKk776YVzgzWwXKp5s4GH0-q0Vb9_qntrbppFkrkwBLBg8D-p4BrHjr0raqsN1iWusawn2I8TIJUZhDQvT_oXdO5OqwXKMlpFm4pA3WwpIxrvHdYfJuhoN4zUiEj9ZFRYHd_uv8mv0IJwOESeLQlPv2vpMaT8VLyDcHonO8</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Yaras, Yusuf S.</creator><creator>Yildirim, Dursun Korel</creator><creator>Herzka, Daniel A.</creator><creator>Rogers, Toby</creator><creator>Campbell‐Washburn, Adrienne E.</creator><creator>Lederman, Robert J.</creator><creator>Degertekin, F. Levent</creator><creator>Kocaturk, Ozgur</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1117-559X</orcidid><orcidid>https://orcid.org/0000-0002-7169-5693</orcidid><orcidid>https://orcid.org/0000-0002-1145-939X</orcidid></search><sort><creationdate>202105</creationdate><title>Real‐time device tracking under MRI using an acousto‐optic active marker</title><author>Yaras, Yusuf S. ; Yildirim, Dursun Korel ; Herzka, Daniel A. ; Rogers, Toby ; Campbell‐Washburn, Adrienne E. ; Lederman, Robert J. ; Degertekin, F. Levent ; Kocaturk, Ozgur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-411cf4f1e308c6a9b2779622c8e45aada42c0a00e887ae4e0015588f7c721b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acousto‐optic modulation</topic><topic>active devices</topic><topic>Animal models</topic><topic>Animals</topic><topic>Bragg gratings</topic><topic>catheter</topic><topic>Catheters</topic><topic>Equipment Design</topic><topic>fiber optic sensor</topic><topic>Heating</topic><topic>interventional MRI</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging, Interventional</topic><topic>Markers</topic><topic>Medical instruments</topic><topic>Optical communication</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Phantoms, Imaging</topic><topic>Piezoelectric crystals</topic><topic>Piezoelectric transducers</topic><topic>Position sensing</topic><topic>Radio frequency</topic><topic>real‐time tracking</topic><topic>Tracking devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaras, Yusuf S.</creatorcontrib><creatorcontrib>Yildirim, Dursun Korel</creatorcontrib><creatorcontrib>Herzka, Daniel A.</creatorcontrib><creatorcontrib>Rogers, Toby</creatorcontrib><creatorcontrib>Campbell‐Washburn, Adrienne E.</creatorcontrib><creatorcontrib>Lederman, Robert J.</creatorcontrib><creatorcontrib>Degertekin, F. Levent</creatorcontrib><creatorcontrib>Kocaturk, Ozgur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaras, Yusuf S.</au><au>Yildirim, Dursun Korel</au><au>Herzka, Daniel A.</au><au>Rogers, Toby</au><au>Campbell‐Washburn, Adrienne E.</au><au>Lederman, Robert J.</au><au>Degertekin, F. Levent</au><au>Kocaturk, Ozgur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time device tracking under MRI using an acousto‐optic active marker</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2021-05</date><risdate>2021</risdate><volume>85</volume><issue>5</issue><spage>2904</spage><epage>2914</epage><pages>2904-2914</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose This work aims to demonstrate the use of an “active” acousto‐optic marker with enhanced visibility and reduced radiofrequency (RF) ‐induced heating for interventional MRI. Methods The acousto‐optic marker was fabricated using bulk piezoelectric crystal and π‐phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF‐induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto‐optic markers were characterized in phantom studies. RF‐induced heating risk was evaluated according to ASTM 2182 standard. In vivo real‐time tracking capability was tested in an animal model under a 0.55T scanner. Results Signal‐to‐noise ratio (SNR) levels suitable for real‐time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto‐optic sensor. RF‐induced heating was significantly reduced compared to a coax cable connected reference marker. Real‐time distal tip tracking of an active device was demonstrated in an animal model with a standard real‐time cardiac MR sequence. Conclusion Acousto‐optic markers provide sufficient SNR with a simple structure for real‐time device tracking. RF‐induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto‐optic modulator can be used on a single catheter for determining catheter orientation and shape.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33347642</pmid><doi>10.1002/mrm.28625</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1117-559X</orcidid><orcidid>https://orcid.org/0000-0002-7169-5693</orcidid><orcidid>https://orcid.org/0000-0002-1145-939X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2021-05, Vol.85 (5), p.2904-2914
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7902374
source MEDLINE; Wiley Journals
subjects acousto‐optic modulation
active devices
Animal models
Animals
Bragg gratings
catheter
Catheters
Equipment Design
fiber optic sensor
Heating
interventional MRI
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Interventional
Markers
Medical instruments
Optical communication
Optical fibers
Optics
Phantoms, Imaging
Piezoelectric crystals
Piezoelectric transducers
Position sensing
Radio frequency
real‐time tracking
Tracking devices
title Real‐time device tracking under MRI using an acousto‐optic active marker
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20device%20tracking%20under%20MRI%20using%20an%20acousto%E2%80%90optic%20active%20marker&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Yaras,%20Yusuf%20S.&rft.date=2021-05&rft.volume=85&rft.issue=5&rft.spage=2904&rft.epage=2914&rft.pages=2904-2914&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28625&rft_dat=%3Cproquest_pubme%3E2484163338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484163338&rft_id=info:pmid/33347642&rfr_iscdi=true