Interface Amorphization of Two‐Dimensional Black Phosphorus upon Treatment with Diazonium Salts
Two‐dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extr...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2021-02, Vol.27 (10), p.3361-3366 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two‐dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extremely low functionalization degrees and the limitations in proving the nature of the covalent functionalization still represent challenges in many of these sheet architectures reported to date. Here we shine light on the structural evolution of 2D‐BP upon the addition of electrophilic diazonium salts. We demonstrated the absence of covalent functionalization in both the neutral and the reductive routes, observing in the latter case an unexpected interface conversion of BP to red phosphorus (RP), as characterized by Raman, 31P‐MAS NMR, and X‐ray photoelectron spectroscopies (XPS). Furthermore, thermogravimetric analysis coupled to gas chromatography and mass spectrometry (TG‐GC‐MS), as well as electron paramagnetic resonance (EPR) gave insights into the potential underlying radical mechanism, suggesting a Sandmeyer‐like reaction.
The addition of diazonium salts to black phosphorus intercalation compounds does not lead to covalent functionalization, instead it causes a drastic structural evolution in the interface of few‐layer BP leading to amorphous red phosphorus. |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.202003584 |