Wavelength‐Gated Adaptation of Hydrogel Properties via Photo‐Dynamic Multivalency in Associative Star Polymers

Responsive materials, such as switchable hydrogels, have been largely engineered for maximum changes between two states. In contrast, adaptive systems target distinct functional plateaus between these maxima. Here, we demonstrate how the photostationary state (PSS) of an E/Z‐arylazopyrazole photoswi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-02, Vol.60 (8), p.4358-4367
Hauptverfasser: Ludwanowski, Simon, Skarsetz, Oliver, Creusen, Guido, Hoenders, Daniel, Straub, Paula, Walther, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Responsive materials, such as switchable hydrogels, have been largely engineered for maximum changes between two states. In contrast, adaptive systems target distinct functional plateaus between these maxima. Here, we demonstrate how the photostationary state (PSS) of an E/Z‐arylazopyrazole photoswitch can be tuned by the incident wavelength across a wide color spectrum, and how this behavior can be exploited to engineer the photo‐dynamic mechanical properties of hydrogels based on multivalent photoswitchable interactions. We show that these hydrogels adapt to the wavelength‐dependent PSS and the number of arylazopyrazole units by programmable relationships. Hence, our material design enables the facile adjustment of the mechanical properties without laborious synthetic efforts. The concept goes beyond the classical switching from state A to B, and demonstrates pathways for a truly wavelength‐gated adaptation of hydrogel properties potentially useful to engineer cell fate or in soft robotics. Hydrogels adapt to different colors of light: This study introduces how the mechanical properties of photo‐dynamic hydrogels precisely and reversibly adapt to light of different wavelengths by engineering photo‐switchable multivalency effects in star polymer networks.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202011592