The Role of Dyslipidemia in Colitis-Associated Colorectal Cancer

Dyslipidemia, characterized by metabolic abnormalities, has become an important participant in colorectal cancer (CRC). Dyslipidemia aggravates intestinal inflammation, destroys the protective mucous layer, and disrupts the balance between injury and recovery. On the other hand, antioxidants induced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oncology 2021, Vol.2021, p.6640384-13
Hauptverfasser: Chen, Ke, Guo, Jianrong, Zhang, Tao, Gu, Jian, Li, Huili, Wang, Jiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dyslipidemia, characterized by metabolic abnormalities, has become an important participant in colorectal cancer (CRC). Dyslipidemia aggravates intestinal inflammation, destroys the protective mucous layer, and disrupts the balance between injury and recovery. On the other hand, antioxidants induced by oxidative stress enhance glycolysis to maintain the acquisition of ATP allowing epithelial cells with damaged genomes to survive. In the repetitive phase of colitis, survival factors enable these epithelial cells to continuously proliferate. The main purpose is to restore and rebuild damaged mucosa, mainly aiming to recover mucosal damage and reconstruct mucosa, but it is also implicated in the occurrence and malignancy of CRC. The metabolic reprogramming of aerobic glycolysis and lipid synthesis enables these transformed epithelial cells to convert raw carbohydrate and amino acid substrates, thereby synthesizing protein and phospholipid biomass. Stearoyl-CoA desaturase, responsible for the fatty acid desaturation, improves the fluidity and permeability of cell membranes, which is one of the key factors affecting metabolic rate. In response to available fat, tumor cells reprogram their metabolism to better plunder energy-rich lipids and rapidly scavenge these lipids through continuous proliferation. However, lipid metabolic disorders inhibit the function of immune-infiltrating cells in the tumor microenvironment through the cross-talk between tumor cells and immunosuppressive stromal cells, thereby providing opportunities for tumor progress. Nonsteroidal anti-inflammatory drugs and lipid-lowering drugs can decrease the formation of aberrant crypt foci, lower the burden of the adenomatous polyp, and reduce the incidence of CRC. This review provides a comprehensive understanding of dyslipidemia on tumorigenesis and tumor progression and a development prospect of lipid disorders on tumor immunity.
ISSN:1687-8450
1687-8450
DOI:10.1155/2021/6640384