Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy
Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their e...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2021-01, Vol.288 (1943), p.20202075-20202075 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their effectiveness with biomechanical models. Here we present finite-element analysis models of two Cambrian trilobites with prominent gnathobases-
and
-and compare these to the protopodites of the Cambrian euarthropod
and the modern American horseshoe crab,
. Results show that
,
and
have broadly similar microstrain patterns, reflecting effective durophagous abilities. Conversely, low microstrain values across the
protopodite suggest that the elongate gnathobasic spines transferred minimal strain, implying that this species was less well-adapted to masticate hard prey. These results confirm that Cambrian euarthropods with transversely elongate protopodites bearing short, robust gnathobasic spines were likely durophages. Comparatively, taxa with shorter protopodites armed with long spines, such as
, were more likely restricted to a soft food diet. The prevalence of Cambrian gnathobase-bearing euarthropods and their various feeding specializations may have accelerated the development of complex trophic relationships within early animal ecosystems, especially the 'arms race' between predators and biomineralized prey. |
---|---|
ISSN: | 0962-8452 1471-2954 |
DOI: | 10.1098/rspb.2020.2075 |