The miR-183/96/182 Cluster Regulates the Functions of Corneal Resident Macrophages

Tissue-resident macrophages (ResMϕ) play important roles in the normal development and physiological functions as well as tissue repair and immune/inflammatory response to both internal and external insults. In cornea, ResMϕ are critical to the homeostasis and maintenance, wound healing, ocular immu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ImmunoHorizons 2020-11, Vol.4 (11), p.729-744
Hauptverfasser: Coku, Ardian, McClellan, Sharon A, Van Buren, Eric, Back, Jessica B, Hazlett, Linda D, Xu, Shunbin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tissue-resident macrophages (ResMϕ) play important roles in the normal development and physiological functions as well as tissue repair and immune/inflammatory response to both internal and external insults. In cornea, ResMϕ are critical to the homeostasis and maintenance, wound healing, ocular immune privilege, and immune/inflammatory response to injury and microbial infection. However, the roles of microRNAs in corneal ResMϕ are utterly unknown. Previously, we demonstrated that the conserved miR-183/96/182 cluster (miR-183/96/182) plays important roles in sensory neurons and subgroups of both innate and adaptive immune cells and modulates corneal response to bacterial infection. In this study, we provide direct evidence that the mouse corneal ResMϕ constitutively produce both IL-17f and IL-10. This function is regulated by miR-183/96/182 through targeting Runx1 and Maf, key transcriptional regulators for IL-17f and IL-10 expression, respectively. In addition, we show that miR-183/96/182 has a negative feedback regulation on the TLR4 pathway in mouse corneal ResMϕ. Furthermore, miR-183/96/182 regulates the number of corneal ResMϕ. Inactivation of miR-183/96/182 in mouse results in more steady-state corneal resident immune cells, including ResMϕ, and leads to a simultaneous early upregulation of innate IL-17f and IL-10 production in the cornea after infection. Its multiplex regulations on the simultaneous production of IL-17f and IL-10, TLR4 signaling pathway and the number of corneal ResMϕ place miR-183/96/182 in the center of corneal innate immunity, which is key to the homeostasis of the cornea, ocular immune privilege, and the corneal response to microbial infections.
ISSN:2573-7732
2573-7732
DOI:10.4049/immunohorizons.2000091