When mother knows best: A population genetic model of transgenerational versus intragenerational plasticity

Many organisms exhibit phenotypic plasticity; producing alternate phenotypes depending on the environment. Individuals can be plastic (intragenerational or direct plasticity), wherein individuals of the same genotype produce different phenotypes in response to the environments they experience. Alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biology 2020-01, Vol.33 (1), p.127-137
Hauptverfasser: Dury, Guillaume J., Wade, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many organisms exhibit phenotypic plasticity; producing alternate phenotypes depending on the environment. Individuals can be plastic (intragenerational or direct plasticity), wherein individuals of the same genotype produce different phenotypes in response to the environments they experience. Alternatively, an individual's phenotype may be under the control of its parents, usually the mother (transgenerational or indirect plasticity), so that mother's genotype determines the phenotype produced by a given genotype of her offspring. Under what conditions does plasticity evolve to have intragenerational as opposed to transgenerational genetic control? To explore this question, we present a population genetic model for the evolution of transgenerational and intragenerational plasticity. We hypothesize that the capacity for plasticity incurs a fitness cost, which is borne either by the individual developing the plastic phenotype or by its mother. We also hypothesize that individuals are imperfect predictors of future environments and their capacity for plasticity can lead them occasionally to make a low‐fitness phenotype for a particular environment. When the cost, benefit and error parameters are equal, we show that there is no evolutionary advantage to intragenerational over transgenerational plasticity, although the rate of evolution of transgenerational plasticity is half the rate for intragenerational plasticity, as predicted by theory on indirect genetic effects. We find that transgenerational plasticity evolves when mothers are better predictors of future environments than offspring or when the fitness cost of the capacity for plasticity is more readily borne by a mother than by her developing offspring. We discuss different natural systems with either direct intragenerational plasticity or indirect transgenerational plasticity and find a pattern qualitatively in accord with the predictions of our model. Persistence or extinction of intra‐ and transgenerational plasticity depend on differences in error rate (r) and inherent cost (c).
ISSN:1010-061X
1420-9101
1420-9101
DOI:10.1111/jeb.13545