Context-aware dimensionality reduction deconvolutes gut microbial community dynamics

The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2021-02, Vol.39 (2), p.165-168
Hauptverfasser: Martino, Cameron, Shenhav, Liat, Marotz, Clarisse A., Armstrong, George, McDonald, Daniel, Vázquez-Baeza, Yoshiki, Morton, James T., Jiang, Lingjing, Dominguez-Bello, Maria Gloria, Swafford, Austin D., Halperin, Eran, Knight, Rob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 2
container_start_page 165
container_title Nature biotechnology
container_volume 39
creator Martino, Cameron
Shenhav, Liat
Marotz, Clarisse A.
Armstrong, George
McDonald, Daniel
Vázquez-Baeza, Yoshiki
Morton, James T.
Jiang, Lingjing
Dominguez-Bello, Maria Gloria
Swafford, Austin D.
Halperin, Eran
Knight, Rob
description The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets. Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.
doi_str_mv 10.1038/s41587-020-0660-7
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7878194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657382739</galeid><sourcerecordid>A657382739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</originalsourceid><addsrcrecordid>eNqNkl9r1jAUxosobk4_gDdSEIYDO_OvSXojjBedg8FAp7chTU67jDaZTbv5fntTOrdVHEigSc_5PU9LzpNlrzE6xIjKD5HhUooCEVQgzlEhnmS7uGS8wLziT9MZzV1c8p3sRYyXCCHOOH-e7VAiuaww283ON8GP8Gss9I0eILeuBx9d8Lpz4zYfwE5mTK-5BRP8deimEWLeTmPeOzOE2ukuN6HvJz_jdut1qseX2bNGdxFe3e572ffPn843X4rTs-OTzdFpYUqZ_szWFcYVINJYK0mNcM1wzbFGHKPalJgjyqlhuqS6ErLhUjIE1goQzHBaE7qXfVx8r6a6B2vAj4Pu1NXgej1sVdBOrTveXag2XCshhcQVSwbvbg2G8HOCOKreRQNdpz2EKSrCaMUJ5Ugm9O1f6GWYhnRPMyUlIrLE7J5qdQfK-Sak75rZVB3xUlBJBK0SdfgPKi0L6fqCh8al-kqwvxKYZWitnmJUa_DgcfDk29f_Z89-rNn3D9h6is5DTI_o2osxLpIVjhc8ZSTGAZq7mWCk5uiqJboqRVfN0VUiad48HOad4k9WE0AWIKaWb2G4n8Djrr8BHZf2pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488028514</pqid></control><display><type>article</type><title>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Martino, Cameron ; Shenhav, Liat ; Marotz, Clarisse A. ; Armstrong, George ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Morton, James T. ; Jiang, Lingjing ; Dominguez-Bello, Maria Gloria ; Swafford, Austin D. ; Halperin, Eran ; Knight, Rob</creator><creatorcontrib>Martino, Cameron ; Shenhav, Liat ; Marotz, Clarisse A. ; Armstrong, George ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Morton, James T. ; Jiang, Lingjing ; Dominguez-Bello, Maria Gloria ; Swafford, Austin D. ; Halperin, Eran ; Knight, Rob</creatorcontrib><description>The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets. Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0660-7</identifier><identifier>PMID: 32868914</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 704/158/855 ; Agriculture ; Algorithms ; Analysis ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Brief Communication ; Cesarean section ; Composition ; Computer science ; Context switching ; Data reduction ; Datasets ; Gastrointestinal Microbiome ; Genotype &amp; phenotype ; Humans ; Image processing ; Infant ; Intestinal microflora ; Life Sciences ; Methods ; Microbiomes ; Microbiota (Symbiotic organisms) ; Microorganisms ; Phenotype ; Phenotypes ; Reduction ; Tensors</subject><ispartof>Nature biotechnology, 2021-02, Vol.39 (2), p.165-168</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</citedby><cites>FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</cites><orcidid>0000-0002-8879-6159 ; 0000-0002-2373-3691 ; 0000-0002-0975-9019 ; 0000-0003-3189-2681 ; 0000-0002-1061-3295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-020-0660-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-020-0660-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32868914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martino, Cameron</creatorcontrib><creatorcontrib>Shenhav, Liat</creatorcontrib><creatorcontrib>Marotz, Clarisse A.</creatorcontrib><creatorcontrib>Armstrong, George</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Vázquez-Baeza, Yoshiki</creatorcontrib><creatorcontrib>Morton, James T.</creatorcontrib><creatorcontrib>Jiang, Lingjing</creatorcontrib><creatorcontrib>Dominguez-Bello, Maria Gloria</creatorcontrib><creatorcontrib>Swafford, Austin D.</creatorcontrib><creatorcontrib>Halperin, Eran</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><title>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets. Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.</description><subject>631/114</subject><subject>704/158/855</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Brief Communication</subject><subject>Cesarean section</subject><subject>Composition</subject><subject>Computer science</subject><subject>Context switching</subject><subject>Data reduction</subject><subject>Datasets</subject><subject>Gastrointestinal Microbiome</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Image processing</subject><subject>Infant</subject><subject>Intestinal microflora</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Reduction</subject><subject>Tensors</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl9r1jAUxosobk4_gDdSEIYDO_OvSXojjBedg8FAp7chTU67jDaZTbv5fntTOrdVHEigSc_5PU9LzpNlrzE6xIjKD5HhUooCEVQgzlEhnmS7uGS8wLziT9MZzV1c8p3sRYyXCCHOOH-e7VAiuaww283ON8GP8Gss9I0eILeuBx9d8Lpz4zYfwE5mTK-5BRP8deimEWLeTmPeOzOE2ukuN6HvJz_jdut1qseX2bNGdxFe3e572ffPn843X4rTs-OTzdFpYUqZ_szWFcYVINJYK0mNcM1wzbFGHKPalJgjyqlhuqS6ErLhUjIE1goQzHBaE7qXfVx8r6a6B2vAj4Pu1NXgej1sVdBOrTveXag2XCshhcQVSwbvbg2G8HOCOKreRQNdpz2EKSrCaMUJ5Ugm9O1f6GWYhnRPMyUlIrLE7J5qdQfK-Sak75rZVB3xUlBJBK0SdfgPKi0L6fqCh8al-kqwvxKYZWitnmJUa_DgcfDk29f_Z89-rNn3D9h6is5DTI_o2osxLpIVjhc8ZSTGAZq7mWCk5uiqJboqRVfN0VUiad48HOad4k9WE0AWIKaWb2G4n8Djrr8BHZf2pg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Martino, Cameron</creator><creator>Shenhav, Liat</creator><creator>Marotz, Clarisse A.</creator><creator>Armstrong, George</creator><creator>McDonald, Daniel</creator><creator>Vázquez-Baeza, Yoshiki</creator><creator>Morton, James T.</creator><creator>Jiang, Lingjing</creator><creator>Dominguez-Bello, Maria Gloria</creator><creator>Swafford, Austin D.</creator><creator>Halperin, Eran</creator><creator>Knight, Rob</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8879-6159</orcidid><orcidid>https://orcid.org/0000-0002-2373-3691</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><orcidid>https://orcid.org/0000-0003-3189-2681</orcidid><orcidid>https://orcid.org/0000-0002-1061-3295</orcidid></search><sort><creationdate>20210201</creationdate><title>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</title><author>Martino, Cameron ; Shenhav, Liat ; Marotz, Clarisse A. ; Armstrong, George ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Morton, James T. ; Jiang, Lingjing ; Dominguez-Bello, Maria Gloria ; Swafford, Austin D. ; Halperin, Eran ; Knight, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114</topic><topic>704/158/855</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Brief Communication</topic><topic>Cesarean section</topic><topic>Composition</topic><topic>Computer science</topic><topic>Context switching</topic><topic>Data reduction</topic><topic>Datasets</topic><topic>Gastrointestinal Microbiome</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Image processing</topic><topic>Infant</topic><topic>Intestinal microflora</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Reduction</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martino, Cameron</creatorcontrib><creatorcontrib>Shenhav, Liat</creatorcontrib><creatorcontrib>Marotz, Clarisse A.</creatorcontrib><creatorcontrib>Armstrong, George</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Vázquez-Baeza, Yoshiki</creatorcontrib><creatorcontrib>Morton, James T.</creatorcontrib><creatorcontrib>Jiang, Lingjing</creatorcontrib><creatorcontrib>Dominguez-Bello, Maria Gloria</creatorcontrib><creatorcontrib>Swafford, Austin D.</creatorcontrib><creatorcontrib>Halperin, Eran</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martino, Cameron</au><au>Shenhav, Liat</au><au>Marotz, Clarisse A.</au><au>Armstrong, George</au><au>McDonald, Daniel</au><au>Vázquez-Baeza, Yoshiki</au><au>Morton, James T.</au><au>Jiang, Lingjing</au><au>Dominguez-Bello, Maria Gloria</au><au>Swafford, Austin D.</au><au>Halperin, Eran</au><au>Knight, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>165</spage><epage>168</epage><pages>165-168</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets. Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32868914</pmid><doi>10.1038/s41587-020-0660-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8879-6159</orcidid><orcidid>https://orcid.org/0000-0002-2373-3691</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><orcidid>https://orcid.org/0000-0003-3189-2681</orcidid><orcidid>https://orcid.org/0000-0002-1061-3295</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2021-02, Vol.39 (2), p.165-168
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7878194
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/114
704/158/855
Agriculture
Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Brief Communication
Cesarean section
Composition
Computer science
Context switching
Data reduction
Datasets
Gastrointestinal Microbiome
Genotype & phenotype
Humans
Image processing
Infant
Intestinal microflora
Life Sciences
Methods
Microbiomes
Microbiota (Symbiotic organisms)
Microorganisms
Phenotype
Phenotypes
Reduction
Tensors
title Context-aware dimensionality reduction deconvolutes gut microbial community dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-aware%20dimensionality%20reduction%20deconvolutes%20gut%20microbial%20community%20dynamics&rft.jtitle=Nature%20biotechnology&rft.au=Martino,%20Cameron&rft.date=2021-02-01&rft.volume=39&rft.issue=2&rft.spage=165&rft.epage=168&rft.pages=165-168&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0660-7&rft_dat=%3Cgale_pubme%3EA657382739%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488028514&rft_id=info:pmid/32868914&rft_galeid=A657382739&rfr_iscdi=true