Context-aware dimensionality reduction deconvolutes gut microbial community dynamics
The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2021-02, Vol.39 (2), p.165-168 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 2 |
container_start_page | 165 |
container_title | Nature biotechnology |
container_volume | 39 |
creator | Martino, Cameron Shenhav, Liat Marotz, Clarisse A. Armstrong, George McDonald, Daniel Vázquez-Baeza, Yoshiki Morton, James T. Jiang, Lingjing Dominguez-Bello, Maria Gloria Swafford, Austin D. Halperin, Eran Knight, Rob |
description | The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.
Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool. |
doi_str_mv | 10.1038/s41587-020-0660-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7878194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657382739</galeid><sourcerecordid>A657382739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</originalsourceid><addsrcrecordid>eNqNkl9r1jAUxosobk4_gDdSEIYDO_OvSXojjBedg8FAp7chTU67jDaZTbv5fntTOrdVHEigSc_5PU9LzpNlrzE6xIjKD5HhUooCEVQgzlEhnmS7uGS8wLziT9MZzV1c8p3sRYyXCCHOOH-e7VAiuaww283ON8GP8Gss9I0eILeuBx9d8Lpz4zYfwE5mTK-5BRP8deimEWLeTmPeOzOE2ukuN6HvJz_jdut1qseX2bNGdxFe3e572ffPn843X4rTs-OTzdFpYUqZ_szWFcYVINJYK0mNcM1wzbFGHKPalJgjyqlhuqS6ErLhUjIE1goQzHBaE7qXfVx8r6a6B2vAj4Pu1NXgej1sVdBOrTveXag2XCshhcQVSwbvbg2G8HOCOKreRQNdpz2EKSrCaMUJ5Ugm9O1f6GWYhnRPMyUlIrLE7J5qdQfK-Sak75rZVB3xUlBJBK0SdfgPKi0L6fqCh8al-kqwvxKYZWitnmJUa_DgcfDk29f_Z89-rNn3D9h6is5DTI_o2osxLpIVjhc8ZSTGAZq7mWCk5uiqJboqRVfN0VUiad48HOad4k9WE0AWIKaWb2G4n8Djrr8BHZf2pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488028514</pqid></control><display><type>article</type><title>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Martino, Cameron ; Shenhav, Liat ; Marotz, Clarisse A. ; Armstrong, George ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Morton, James T. ; Jiang, Lingjing ; Dominguez-Bello, Maria Gloria ; Swafford, Austin D. ; Halperin, Eran ; Knight, Rob</creator><creatorcontrib>Martino, Cameron ; Shenhav, Liat ; Marotz, Clarisse A. ; Armstrong, George ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Morton, James T. ; Jiang, Lingjing ; Dominguez-Bello, Maria Gloria ; Swafford, Austin D. ; Halperin, Eran ; Knight, Rob</creatorcontrib><description>The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.
Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-020-0660-7</identifier><identifier>PMID: 32868914</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114 ; 704/158/855 ; Agriculture ; Algorithms ; Analysis ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Brief Communication ; Cesarean section ; Composition ; Computer science ; Context switching ; Data reduction ; Datasets ; Gastrointestinal Microbiome ; Genotype & phenotype ; Humans ; Image processing ; Infant ; Intestinal microflora ; Life Sciences ; Methods ; Microbiomes ; Microbiota (Symbiotic organisms) ; Microorganisms ; Phenotype ; Phenotypes ; Reduction ; Tensors</subject><ispartof>Nature biotechnology, 2021-02, Vol.39 (2), p.165-168</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</citedby><cites>FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</cites><orcidid>0000-0002-8879-6159 ; 0000-0002-2373-3691 ; 0000-0002-0975-9019 ; 0000-0003-3189-2681 ; 0000-0002-1061-3295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-020-0660-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-020-0660-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32868914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martino, Cameron</creatorcontrib><creatorcontrib>Shenhav, Liat</creatorcontrib><creatorcontrib>Marotz, Clarisse A.</creatorcontrib><creatorcontrib>Armstrong, George</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Vázquez-Baeza, Yoshiki</creatorcontrib><creatorcontrib>Morton, James T.</creatorcontrib><creatorcontrib>Jiang, Lingjing</creatorcontrib><creatorcontrib>Dominguez-Bello, Maria Gloria</creatorcontrib><creatorcontrib>Swafford, Austin D.</creatorcontrib><creatorcontrib>Halperin, Eran</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><title>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.
Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.</description><subject>631/114</subject><subject>704/158/855</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Brief Communication</subject><subject>Cesarean section</subject><subject>Composition</subject><subject>Computer science</subject><subject>Context switching</subject><subject>Data reduction</subject><subject>Datasets</subject><subject>Gastrointestinal Microbiome</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Image processing</subject><subject>Infant</subject><subject>Intestinal microflora</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microorganisms</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Reduction</subject><subject>Tensors</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl9r1jAUxosobk4_gDdSEIYDO_OvSXojjBedg8FAp7chTU67jDaZTbv5fntTOrdVHEigSc_5PU9LzpNlrzE6xIjKD5HhUooCEVQgzlEhnmS7uGS8wLziT9MZzV1c8p3sRYyXCCHOOH-e7VAiuaww283ON8GP8Gss9I0eILeuBx9d8Lpz4zYfwE5mTK-5BRP8deimEWLeTmPeOzOE2ukuN6HvJz_jdut1qseX2bNGdxFe3e572ffPn843X4rTs-OTzdFpYUqZ_szWFcYVINJYK0mNcM1wzbFGHKPalJgjyqlhuqS6ErLhUjIE1goQzHBaE7qXfVx8r6a6B2vAj4Pu1NXgej1sVdBOrTveXag2XCshhcQVSwbvbg2G8HOCOKreRQNdpz2EKSrCaMUJ5Ugm9O1f6GWYhnRPMyUlIrLE7J5qdQfK-Sak75rZVB3xUlBJBK0SdfgPKi0L6fqCh8al-kqwvxKYZWitnmJUa_DgcfDk29f_Z89-rNn3D9h6is5DTI_o2osxLpIVjhc8ZSTGAZq7mWCk5uiqJboqRVfN0VUiad48HOad4k9WE0AWIKaWb2G4n8Djrr8BHZf2pg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Martino, Cameron</creator><creator>Shenhav, Liat</creator><creator>Marotz, Clarisse A.</creator><creator>Armstrong, George</creator><creator>McDonald, Daniel</creator><creator>Vázquez-Baeza, Yoshiki</creator><creator>Morton, James T.</creator><creator>Jiang, Lingjing</creator><creator>Dominguez-Bello, Maria Gloria</creator><creator>Swafford, Austin D.</creator><creator>Halperin, Eran</creator><creator>Knight, Rob</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8879-6159</orcidid><orcidid>https://orcid.org/0000-0002-2373-3691</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><orcidid>https://orcid.org/0000-0003-3189-2681</orcidid><orcidid>https://orcid.org/0000-0002-1061-3295</orcidid></search><sort><creationdate>20210201</creationdate><title>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</title><author>Martino, Cameron ; Shenhav, Liat ; Marotz, Clarisse A. ; Armstrong, George ; McDonald, Daniel ; Vázquez-Baeza, Yoshiki ; Morton, James T. ; Jiang, Lingjing ; Dominguez-Bello, Maria Gloria ; Swafford, Austin D. ; Halperin, Eran ; Knight, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5887-db9119e02fdd82b01b41b61a0610bc5160363c4a53a978f68840edd7e74c63b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/114</topic><topic>704/158/855</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Brief Communication</topic><topic>Cesarean section</topic><topic>Composition</topic><topic>Computer science</topic><topic>Context switching</topic><topic>Data reduction</topic><topic>Datasets</topic><topic>Gastrointestinal Microbiome</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Image processing</topic><topic>Infant</topic><topic>Intestinal microflora</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microorganisms</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Reduction</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martino, Cameron</creatorcontrib><creatorcontrib>Shenhav, Liat</creatorcontrib><creatorcontrib>Marotz, Clarisse A.</creatorcontrib><creatorcontrib>Armstrong, George</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Vázquez-Baeza, Yoshiki</creatorcontrib><creatorcontrib>Morton, James T.</creatorcontrib><creatorcontrib>Jiang, Lingjing</creatorcontrib><creatorcontrib>Dominguez-Bello, Maria Gloria</creatorcontrib><creatorcontrib>Swafford, Austin D.</creatorcontrib><creatorcontrib>Halperin, Eran</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martino, Cameron</au><au>Shenhav, Liat</au><au>Marotz, Clarisse A.</au><au>Armstrong, George</au><au>McDonald, Daniel</au><au>Vázquez-Baeza, Yoshiki</au><au>Morton, James T.</au><au>Jiang, Lingjing</au><au>Dominguez-Bello, Maria Gloria</au><au>Swafford, Austin D.</au><au>Halperin, Eran</au><au>Knight, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-aware dimensionality reduction deconvolutes gut microbial community dynamics</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>39</volume><issue>2</issue><spage>165</spage><epage>168</epage><pages>165-168</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>The translational power of human microbiome studies is limited by high interindividual variation. We describe a dimensionality reduction tool, compositional tensor factorization (CTF), that incorporates information from the same host across multiple samples to reveal patterns driving differences in microbial composition across phenotypes. CTF identifies robust patterns in sparse compositional datasets, allowing for the detection of microbial changes associated with specific phenotypes that are reproducible across datasets.
Gut microbiome composition is associated with phenotypes as revealed by a dimensionality reduction tool.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32868914</pmid><doi>10.1038/s41587-020-0660-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8879-6159</orcidid><orcidid>https://orcid.org/0000-0002-2373-3691</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><orcidid>https://orcid.org/0000-0003-3189-2681</orcidid><orcidid>https://orcid.org/0000-0002-1061-3295</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2021-02, Vol.39 (2), p.165-168 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7878194 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/114 704/158/855 Agriculture Algorithms Analysis Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Brief Communication Cesarean section Composition Computer science Context switching Data reduction Datasets Gastrointestinal Microbiome Genotype & phenotype Humans Image processing Infant Intestinal microflora Life Sciences Methods Microbiomes Microbiota (Symbiotic organisms) Microorganisms Phenotype Phenotypes Reduction Tensors |
title | Context-aware dimensionality reduction deconvolutes gut microbial community dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-aware%20dimensionality%20reduction%20deconvolutes%20gut%20microbial%20community%20dynamics&rft.jtitle=Nature%20biotechnology&rft.au=Martino,%20Cameron&rft.date=2021-02-01&rft.volume=39&rft.issue=2&rft.spage=165&rft.epage=168&rft.pages=165-168&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-020-0660-7&rft_dat=%3Cgale_pubme%3EA657382739%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488028514&rft_id=info:pmid/32868914&rft_galeid=A657382739&rfr_iscdi=true |